Skip to content

Tag: 3D Model

Tags

より良く、そして環境に優しい船舶設計を目指しますか?運航データがその力になります。

シミュレーションツールは、航海最適化や、運航の安全性と持続可能性を高める高度な復原性ソフトウェアの基盤としてよく知られています。そして今、このデジタルツールに新たな役割が生まれつつあります。それは、設計段階で仮想的に新しい船舶のコンセプトを試すことで、船舶設計におけるイノベーションを推進することです。  海運業界は今、様々な燃料やエネルギーを必要とする時代を迎えようとしており、それはますます個々のニーズに合わせた設計と同義語になっていくでしょう。燃料や技術の選択肢は、船舶の種類や用途によって最適なものが異なります。また、最も適切なソリューションは、船舶の運航状況や航行ルートによっても異なります。 例えば、最近、タグボートやフェリーにバッテリー技術が採用されたことは、これらのシステムが、特定の近海航路を航行する小型船舶に特に適していることを示しています。一方、風力推進システムは、強力で安定した風が吹く外洋航路の船舶に最も効果的です。寄港地で燃料補給ができるかどうかも、LNG、メタノール、アンモニアなどの代替燃料に関する決定に影響を与えるでしょう。 しかし、これは、こうした斬新なコンセプトの開発を担当するエンジニアや船舶設計者が、設計段階で下さなければならない多くの決定事項の内のほんの一部にすぎません。課題は、新しいエンジン、タンク、技術を統合することだけでなく、安全性、効率性、収益性の観点から、これらの設計が海上で有効であることを保証するために、適切な構成、寸法、積載量、強度、船体形状を選択することにあります。 最終的な目標は、船舶設計者が設計の初期段階から、新しい船舶コンセプトが就航後にどのような性能を発揮するかをモデル化できるようにすることです。迅速かつ簡単にこれを行えるようになるのが理想的です。そうすれば、様々な検証を繰り返し行い、コンセプトを確実に最適化することができます。 従来、設計者は類似船のデータに基づいてこれらの評価を下してきましたが、このデータは不完全であることが多く、また、過去において平均的にうまく機能してきた簡略化された規則に基づいて作成されている場合があります。このアプローチは、船舶設計にとってもはや最適な方法ではなく、技術革新を阻害する恐れもあります。さらに、過去のデータが存在しない全く新しい設計の場合はどうでしょうか?その答えは、すでに船舶の運航で広く使用されているツールにあり、それを船舶設計のための新たな見識を引き出すために再利用することです。 未来のパフォーマンスをシミュレーションする3つのステップ  実際の業務ではどのように行われるのでしょうか?類似船舶のデータが入手できない場合でも、以下の3つのステップに従うことで、未来の船舶性能をモデル化することができます。 ステップ1:流力性能モデルの作成 船舶の設計に使用された3Dモデルに基づいて、流力性能モデルは、特定の船舶がさまざまな速度や海象条件下でどのように機能するかを把握する。 流力性能モデルをゼロから構築することは、多大な時間と労力を要する作業になる可能性がありますが、その必要はありません。NAPA性能モデルは、世界中のすべての既存の船種とサイズに対応する基準モデルを提供し、この分析のための最適な枠組みとなります。その後、新しい設計の独自の特性を反映したデータによって調整されます。 ステップ2:運航計画の決定  これは、本船が運航される地域や寄港地だけでなく、想定される速度の範囲や本船が受ける積付条件についても概要を示すものです。 これは、すでに船舶の運航状況を詳細に把握している修繕計画においては容易なことですが、新造船の場合は、AISデータから多くの情報を得ることができます。NAPAのデータベースは、数年にわたる6万隻の船舶のAISデータで構成され、このデータの意味を理解し、船舶タイプや サイズごとにフィルタリングするなどのアルゴリズムによってサポートされています。実際、このデータベースは、どの地域で、どのようなタイプの船舶が、どのように運航されているかという貴重な情報を提供しています。 ステップ3:現実的な運航のシミュレーション 流力性能モデルと運航計画を一緒にすることで、特定の航路における未来の船の性能をモデル化することができます。 NAPA Voyage Optimizationはまさにそれを実行するように設定されています。このツールは天候に左右される航海のために作られたもので、複数の航路バリエーションにおける船の挙動をシミュレートすることで、世界のどこでも2つの港を結ぶ最適な航路と速度分布を決定します。 その第一の目的は運航ですが、まだ図面にしか描かれていない船舶のコンセプトに対して、理論的な航海をモデル化する目的にも利用できます。 過去の気象データと、関連する海域や時期の統計的気候データを使って、船舶が運航する海域の気象条件や海況を再現します。そうすることで、未来の船舶の速度範囲、エンジン負荷、燃料消費量、運航中の温室効果ガス排出量をモデル化することができます。 よりエネルギー効率の高い船舶の設計に加え、NAPAの運航シミュレーションツールは、より安全で耐久性の高い船舶の開発にも利用できます。船舶設計者は、未来の船舶の耐航性能を評価し、船舶がその耐用期間中に航行する現実的な条件や航海に必要な構造荷重を評価することができます。 船舶設計者にとっての最大の利点は、さまざまな設計の繰り返しにおいてこの分析をすべて繰り返し、船主独自の運航ニーズを満たすにはどのオプションが最適かを判断できることです。  ケーススタディ – 繰り返し設計の検証 これが実際にどのようなものかを説明するために、バルト海のストックホルム、マリエハムン、ヘルシンキ間の航路に就航する新造RoPax船を例にとってみましょう。 私たちはまず、全長197メートル、幅31メートル、設計喫水7.1メートルの基本船型から始めました。その後、排水量(または重量)を一定に保ちながら、それぞれ寸法と構造を変えた3つのバリエーションを作成しました。 船体バリエーション 次のステップは、3港間の航路、スウェーデン群島での速度制限、入港時の低速などを考慮した運航計画を立てることです。これをもとに、2023年全体をカバーする26航海(2週間に1航海)のシミュレーションを行いました。 その結果、設計改善のための豊富な情報が得られ、未来の船は航行時間の約50%を全速力で、25%を港で過ごし、残りを低速で運航することが明らかになりました。これは、必要な推進力レベルを理解し、エネルギー効率を最大化するための適切なエンジン出力と構成の選択に役立つため、設計の観点からは貴重な知見です。 新燃料とエネルギー源のシミュレーション これをさらに一歩進めれば、将来の燃料消費量のシミュレーションを行い、特定の船舶のさまざまな燃料オプションのコストと排出削減効果を比較することができます。今後のEU ETSと FuelEU罰則を計算に含めることで、この10年間と将来における燃料コストを包括的に把握することができます。このようなシミュレーションは、新たな運航コストを考慮した場合、設計のバリエーションによる大きな違いを明らかにすることができ、最終的には船主の大幅な経費削減につながります。このような分析の不確実性は、予測される燃料価格と規制コストの精度に左右されますが、規制の状況や価格予測が明らかになるにつれて、運航シミュレーションツールはさらに強力になるでしょう。 将来を見据えた船舶設計のために、従来と異なる思考を なぜこのようなビジョンが重要なのでしょうか?なぜなら、海運業界が脱炭素の未来に向けて自信を持って前進するためには、船舶設計の選択と同じくらい重要な決定が、データと証拠に基づいて行われなければならないからです。 このシミュレーションは、既成概念にとらわれず、すでに自由に使えるシミュレーションツールを最大限に活用することで、今後先駆者となる船主が直面する最も重要な疑問の1つである、「新造船が安全で効率的、コンプライアンスに適合し、経営上のニーズに応えることができるか」、という問いに明確な答えを提供できることを示しています。 EUETS、FuelEU、IMOのGHG戦略など、新たな環境規制が導入され、エネルギー効率の高い設計や、最終的には新燃料への移行が求められる中、船舶設計の革新はもはや「あればいい」ものではなく、不可欠なものとなりつつあります。 今日、環境対応型船舶がより良い傭船料を獲得していることがすでに確認されており、特定の船種では割増料が1日あたり1万米ドル、あるいはそれ以上に達しています。しかし、より多くの船主に決断を促すためには、彼らの投資がいかに健全で、多くの場合20年以上に及ぶその耐用年数を通じて、彼らの資産がいかに将来性を保ち、コンプライアンスを遵守できるかを、確かなデータ分析によって証明する必要があります。 より広い意味で、これは船舶設計の革新を支える運航データの力を証明するものでもあります。海上に革新的な船舶の数が増えるにつれ、設計データと運航データの間に新たな架け橋を作る機会が私達にはあります。これは、実際の運航から得られる知見を設計プロセスに反映させ、将来の船隊の性能を向上させるためには非常に重要なことです。船主と造船会社が匿名化された安全なデータ共有に協力する必要がありますが、それだけの価値があるはずです。海事業会、人々、そして地球、すべてが恩恵を受けることになるのです。        

Read Article

海運業界におけるデジタルツインの普及加速に向けた 業界横断型の協力体制を始動

日本における海運会社、造船会社、船級協会、ソフトウェア・プロバイダーが参加するデジタルツインプロジェクト始動で、船舶の設計と運航データの共有による新たな価値創造が実現、画期的進歩へ 東京/ 日本: 2024年5月22日 日本の海運業界を牽引する各分野のリーダーらはこのほど、造船会社と海運会社の間で安全なデータ共有フレームワークを構築し、船舶のライフサイクル全体を見通したデジタルツインの利用推進を目的とする業界横断型プロジェクトにおいて、その有効性を確認いたしました。 当プロジェクトは、船舶固有の設計データを活用することにより、海上における運航性能の効率性と安全性を改善し、また運航データを共有することで、船舶の新たな設計開発に活かすこと等を目的としています。当プロジェクトには、日本郵船グループである株式会社MTI、株式会社商船三井、丸紅株式会社が海運会社として参加、また造船会社からは今治造船株式会社、ジャパンマリンユナイテッド株式会社、株式会社臼杵造船所が参加し、ソフトウェア・データサービス会社のNAPA、船級協会として一般財団法人日本海事協会が参加しています。 今回の具体的成果としては、設計・運航等の機密性の高いデータの共有に関する障壁を乗り越えることにより、造船会社、船主、船舶管理者、用船者等のさまざまなステークホルダー間でのさらなるデータ共有拡大と、それによる新たな価値創造の可能性が確認されたことです。 当プロジェクト初期の2つのフェーズにおいては、船舶の設計に使用された3Dモデルデータを安全に共有し、船舶固有のデジタルツインの作成に使用することで、船舶のライフサイクル全体を通じて運航効率と安全性向上を支援する30以上の潜在的なユースケースが明らかになりました。 さらに積付最適化、船舶状態の監視、省エネ装置の評価をサポートするデジタルツインの3つのユースケースの実現可能性の検討を通じて、その有効性が確認されました。 今回のフィージビリティ・スタディ(実現可能性に向けた実証実験)を踏まえ、次のフェーズでは、設計段階で作成された3Dモデルを、安全かつアクセス制御されたデジタル環境下で共有できる新たなプラットフォームを開発するとともに、今後は商業的に使用できるよう、当革新的アプローチの実践に向けた新たなビジネスモデルを開発する予定です。これは、造船会社やソリューション・プロバイダーにとって新たなビジネスとなるだけでなく、ステークホルダー間で利益を共有する仕組みを創出できる可能性があります。なお、今回のプロジェクトのフェーズでは、プラットフォームが中立かつ公正であることを保証するため、中立的立場である日本海事協会が主導を行いました。 当プロジェクトは2025年の運用開始を目指しており、海運業界におけるデジタルツイン導入に向け、従来型の障壁を克服するため、設計・運航データの共有において画期的な進歩を遂げる可能性を示すものです。 当パートナーシップはまた、運航データを造船会社にフィードバックすることで、造船会社のコンセプトが実際の運航においてどのように機能しているかについての貴重な知見を提供し、それにより造船設計者やエンジニアが今後の船舶設計の改善に活かせる方法についても調査しました。   NAPA Studios 担当 のNAPA Group 副社長 兼 NAPA Japan 代表取締役社長 水谷直樹は次のように述べています: 「コラボレーションは、エネルギー転換に向けた新たなソリューションの開発や既存オペレーションの最適化や高度化を実現する基盤であり続けています。私たちの進めるデジタルツインプロジェクトは、進取の気性に富み、より安全で効率的、また環境により配慮した未来の海運の実現に向けて、設計データと運航データの橋渡しをするという新たな中間目標地点に到達しました。このプロジェクトはまた、業界の専門知識を最大限に活用するとともに、すぐに利用できる技術の可能性を最大限に引き出すことで、業界のバリューチェーン全体でステークホルダーと新たな形でのパートナーシップ構築に向けたより確かな可能性を秘めていると考えます。」   日本海事協会の佐々木吉通デジタルトランスフォーメーションセンター長は、次のように述べています: 「デジタルツインは、海運、特にエネルギー転換期における重要な資産です。デジタルツインは、船舶固有の設計プロファイルや特性に関する比類のない可能性を提供し、得られたデータを船舶の運航とメンテナンス双方の最適化に向けた活用に新たな機会をもたらすと同時に、今後、革新的技術を船上で展開できる可能性をより広げるものです。当プロジェクトは、より設計と運航が複雑化する中で、造船会社と海運会社間でのより緊密な対話促進に向け、いかにデータのサイロ化を断ち切ることができるかを実証するものでもあります。」 ***** 編集者の方々へ NAPAについて  NAPAは、グローバルな海運業界向けのソフトウェアとデジタルサービスのリーディングプロバイダーであり、データサイエンスを活用して、より安全で、より持続可能で、将来にわたって有効な船舶運航を実現しています。 船舶設計のためのスマートソリューションを提供するために1989年に設立され、現在では同社の顧客が建造する新造船の90%以上に採用されるなど、船舶建造において世界的な基準となっています。現在、同社の専門知識は船舶のライフサイクル全体に及び、船舶設計から船舶の運航安全性と効率に至るまで網羅しています。世界中の商船約3,000隻が同社の安全性と効率性向上のためのソリューションを搭載しており、これには海上での安全管理に積極的に取り組むデジタル船舶復原性システム、新たな運航効率を導き出すための知見を提供するクラウドベースのパフォーマンスモニタリング、そして航海最適化ソリューションが含まれています。 フィンランドに本社を置く同社は、200人の専門家を擁し、日本、韓国、中国、シンガポール、米国、ドイツ、ギリシャ、ルーマニア、インドの拠点を通じ、世界中で事業を展開しています。 詳しくはこちら: www.napa.fi   日本海事協会 について 一般財団法人日本海事協会(ClassNK)は、1899年に設立された船級協会で、第三者認証を通じて安全と環境保全に貢献することを使命としています。独自規則及び約100か国の旗国政府を代行しての国際条約に基づく船舶・海洋構造物の検査・証明、ISO等に基づくマネジメントシステム認証など、多様な技術サービスを展開。日本海事協会では、包括的な認証サービスの提供や業界パートナーとの研究開発を通じて、海事産業のデジタル化・脱炭素化へのさまざまな挑戦を全面的に支援しています。 詳しくはこちら  www.classnk.com   当記事に関するお問い合わせは以下よりお願いします。

Read Article

世界初の3D図面承認、NKが完了 日本郵船が自前で基本設計、「造船所との共創模索」

日本・東京ー2024年3月29日 ー 海事プレス(ニュース ー 造船・船用)にて、日本郵船がNAPA Steelで作成した3Dモデルを元に、日本海事協会が2次元図面なしで基本設計の承認を完了したことについて掲載されました。ぜひご覧ください。   日本郵船は28日、日本海事協会(NK)から新造多目的コンテナ船の基本設計で3D(3次元)モデルをもとにした図面認証を取得したと発表した。現在は平面(2次元)の設計図面で行われている新造船の船級承認を3D設計モデルで行う試みは各国で研究などが進んでいるが、外航の新造船で世界初。さらに、通常は造船所が行う新造船の基本設計を今回は日本郵船が自前で行った点が特徴で、「造船所の設計負荷が増加している中、これまで造船所に手渡していた部分も海運会社が並走し、造船所との新たな『共創』の在り方を探った」(中村利執行役員)。日本の海事産業の活性化を目的に、設計プロセスの効率化の核となる構造設計の3D化に先鞭をつけるとともに、造船所の設計負荷低減のための新たな新造船プロジェクトの在り方も模索した格好だ。 新造船の図面承認の3次元化は、近年の造船デジタル化での重要テーマの1つになっている。従来の二次元の図面は、船舶の複雑な構造を平面上に表現しているため、正確に読み取るためには長年の経験と高度な専門知識が必要。これに対して3Dのモデルであれば、設計担当者や海運会社など関係者が直感的に理解できるため、3D設計が徐々に普及しつつある。だが、3DCADシステムが会社や船種によって異なるため、船級協会に承認を申請する際には共通フォーマットの2次元図面にいったん変換する必要があり、さらに船級協会も受け取った2次元図面を3Dモデルに置き換えて評価システムで確認する必要があるなど、データ入力とモデル修正で双方に時間とコストが発生することが課題だった。このため各船級協会や造船所、海運会社が、3Dモデルのままで図面承認を行う検討を進めており、NKもこれまで日本郵船や国内造船所と協力して検討を進めていた。 今回は日本郵船が、船舶構造設計ツール「NAPA Steel」を用いて作成したコンテナ船の3D設計モデルのデータを、NKが船体構造設計支援システム「PrimeShip-HULL」上の連携システムを活用して、2次元図面に変換せずに基本設計段階の全ての図面承認を完了した。基本設計から船級承認まで3D図面で完了したのは外航船では世界初。「3Dと2Dが混在している現在の承認プロセスが、設計から承認に至るまで1つの3Dモデルで行えるようになることで、後戻りやミスもなくなり、品質向上や工数削減にも貢献できる」(NKの松永昌樹技術本部長)。NKとしては3Dによる図面承認の体制を整え、今後は造船所の利用の要望に応えていく方針だ。 また今回は、日本郵船が新造船のコンセプト開発だけでなく、造船所の所掌範囲である基本設計の段階まで実施したことが大きな特徴となる。背景には、船舶燃料の転換や船舶のニーズ多様化により、海運会社が多様な船を検討する必要性がある一方、造船所の設計負荷が増加していることがある。「造船所との『共創』の可能性を模索する必要性を感じており、例えば造船所の状況に応じて新規事業のフィージビリティスタディ段階のコンセプト開発程度は船社が自前で行うなど、造船所と柔軟に『双方よし』の関係を築く手段になるのではと考えている」(中村執行役員)。今回は、造船所と設計引き継ぎのポイントとして、「どこまで進めるのが心地よいかを検証する」ために、自前で基本設計まで実施した。 図面承認の対象となったのは、東アジアと南太平洋の島しょ国の間を航行する2万2000総トン型の多目的コンテナ船「アイランダー船」。船体後方にカーデッキ、前方にコンテナ用ホールドを配置した特殊船型で、就航中の4隻のうち2隻が船齢20年を超えており代替建造を検討している。今回の設計をもとに、国内造船所と具体的な新造船商談を進めている。 3D設計への転換は、海事産業のDXで中心的なテーマだ。「3Dモデルには2次元図面より多くの情報が含まれ、より詳細でスムーズなコミュニケーションが可能。早い段階から造船所の3D設計にわれわれ船社が関与することで、設計工数が低減できる可能性がある」(山本泰工務グループ長)。設計の初期段階から3Dモデルを活用してより多くの情報を作り込むフロントローディング手法への展開や、東京大学MODE講座が研究を進めるモデルベース開発の手法、就航後の船舶での運航支援や保守への適用など、日本郵船も船舶のライフサイクルでの3Dモデルの活用策を検討する。 *海事プレスから転載の許可を得ています。 海事プレス プレスリリース:https://www.kaijipress.com/news/shipbuilding/2024/03/183016/ PDF:世界初の3D図面承認、NKが完了日本郵船が自前で基本設計、「造船所との共創模索」 _ 造船・舶用 _ ニュース _ 海事プレスONLINE 海事プレスURL :https://www.kaijipress.com/    

Read Article

効率を追求:VARDが10週間で実現した3D船舶設計

VARD Design & Engineering社のチームは大きな課題に直面しました:彼らは典型的な構造設計時間を3分の1に削減し、契約締結から船級承認 までを10週間で終えることができるでしょうか? NAPAの3Dベースのツールを駆使して、賢く、創造的に、そして協調的に働くことで彼らはこの難局を打開しました。彼らがどの様に速度と精度を両立させて大成功に導いたかをここで紹介します。 造船業界は変化の最中にあります。よりクリーンで安全であることを求める規則強化により、船舶の設計はしばしば急進的な革新を強いられます。納期も短縮され、その結果、設計者はより多くのことをより少ない時間で行わなければならなくなっています。 この様な状況により、伝統的な直線的な設計プロセスでは対応が難しくなり、より早い段階で設計を確定させることが必要になっています。そして、デジタル3D環境上のモデルという「信頼できる唯一の情報源」にアクセスでき、様々な分野の検討を同時に行うことを可能にする新世代の設計ツールが要求されるようになりました。 NAPAは、構造設計を含む一連のツールを先駆的に業界に提供してきました。これらのツールがどのように構造設計プロセスを変革し、加速させることができるかは、 VARD Design & Engineering社のチームが10週間で船級承認までを完遂させた事例によって示されます。これは通常のプロセスから4週間から6週間も短い期間です。 分散型および協調型エンジニアリング VARD社は難局を好機に変えました。同社は、オフショア再生可能エネルギー分野向けに4 19シリーズの設計をベースにした風力推進船を提供するビジネスチャンスがありました。しかし、同社の造船所の建造スロットで利用可能なものは、船級承認までを完遂させるための時間を考えると理想的とは言えませんでした。同スロットで建造するためには、通常の14-16週間から10週間に設計期間を短縮する必要があったのです。この様な期間短縮を実現するためには、設計チームと船級協会の双方の創造的な思考と協力が必要で、このようなニーズが協調型の効率的なプロセスを実現する不可欠な基盤になりました。 VARD社の主要なエンジニアリングオフィスはノルウェーのÅlesundにあり、11カ国に合計22の拠点を持っています。拠点と専門部門が地理的に広範に分散しているため、VARD社は分散エンジニアリングモデルを運用し、特に時間的制約が厳しい場合には機敏に対応できるようにしています。例えば、10週間で風力推進船を提供するために、クロアチアの設計オフィスのエンジニアがÅlesundに飛んで一連のタスクを完了させるのと並行して、ルーマニアのTulceaのエンジニアリングオフィスのスタッフがモデリング作業を行いました。 デジタルツールの中心的役割 NAPAの構造設計ソリューションは、初期段階から、事前調整に必要な構造細部を含む3Dモデルを容易に作成できます。機械部門と配管部門の担当者は並行して作業を行うことができ、必要に応じて船の構造は随時変更されます。 「私たちはNAPAという3Dツールを用いることによって、船を大きな視点からでも詳細レベルからでも見ることができます。それにより、私たちはÅlesundにいながら状況をよく把握でき、現場の造船所で問題が発生する前に見つけることができます。」— Lina Austigard、VARD Design & Engineering社のシニアエンジニア   Austigard氏は、時間のプレッシャーが高まる中で、詳細設計を早期に開始できることが重要な利点であると強調しています。 NAPAはその様な設計の早期開始を実現できます。2Dでは必ずしも捉えられない欠陥、例えば、整合性が取れていない箇所や、現実にはありえないような区画などを見つけることができます。 個別要望を把握する 船級承認の所要時間である典型的な14-16週間の場合でも、詳細な作業を行うために設計チームと造船所とのコミュニケーションは多く必要となります。実際の建造船の開発にはさらに多くの時間が必要で、姉妹船であっても大きな差異があることがあります。 同じ市場向けであっても、異なるクライアントからは異なる要求を受けることがあります。例えば、風力推進船は通常、大きなと少なくとも一つの大きなクレーンが装備されますが、クライアントごとにギャングウェイの種類、使用方法、クレーンや他の機器の数についてこだわりがあります。また、宿泊施設に関しても、何人が船上で生活し、どのような居住水準とするのか、という点でも異なる要件があるかもしれません。 「新しいタイプの燃料への対応を志向するクライアントがますます多くなっています。私たちは、将来的に新しい燃料への改装を可能とする“新燃料対応準備済み”船を建造しています。」とAustigard氏は言います。 NAPAとのパートナーシップ NAPAチームとの密接な関係も、重要な成功要因の一つです。特に、NAPA Steelの導入後の最初の数ヶ月間には、トレーニングビデオやスクリプトの提供を含む適切なタイミングのサポートのおかげで、VARD社は課題を解決するために必要なスキルと自信を早期に得ることができました。新設計の品質と性能を保証する必要がある中、NAPAとのこのような関係が時間短縮の取り組み強化の中心的な役割を果たしています。

Read Article

KYMA社: 3Dモデルが引き起こすヨットデザインの革新

ヨットデザインの世界は、常に革新が求められています。進化する顧客の要求は、船舶設計者や構造エンジニアに対して、創造性の限界を押し広げるように促しながら、安全性とスムーズで効率的な設計プロセスを確保することを求めています。ここでは、NAPAツールを使用して、KYMA社が最新の3D船舶設計を活用し、どのようにこの難題を好機として取り組んだかについてお伝えします。  

Read Article

代替燃料の未来をモデル化するには

あなたの船が将来どのような代替燃料を使用するのか知りたいですか?あなただけではありません。新しいエネルギー源が世界の船舶に登場するにつれて、船舶業界は確実性を求めています。しかし、占いに頼る必要はありません – 代わりに、シミュレーションツールを使用することで、新しい船の設計、運用、コストについて何を期待するべきかを明らかにすることができます。試す準備はできていますか?ここではその方法を説明します。 船舶業界の代替燃料と革新的な船舶設計への関心は否定できません。現在、代替燃料を使用できる船舶は、世界の船のごく一部 – 総トン数で約6.52% – を占めていますが、その数は急速に増えることが予想されます。2023年の世界のオーダーブックの約半分は、メタノール、LPG、LNG、またはバッテリーを含む代替燃料または動力システムを使用する船舶のためのものでした。これは、前年の3分の1に比べて増加しています(DNVの分析による)。  この代替燃料への需要の増加は、大部分が単純な計算によるものです:エネルギー効率の良い船舶を持つことは商業的に利益をもたらします。すでに、現代のエネルギー効率の良い船舶は、古い船舶よりも優れたチャーター料金を得る傾向があり、プレミアムは1日あたり数千ドルに達し、特定の船舶タイプではさらに高くなります。 ビジネスケースは、燃料効率だけでなく、大幅な温室効果ガス排出削減を目指すことで、今後も成長を続けるでしょう。最近、欧州域内排出量取引制度(EU ETS)が船舶に拡大されたことで、船舶は現在、その船舶自体のCO2排出量に対して金銭的負担が求められており、炭素に直接的な価格を設定しています。これには、IMOのCII規制が追加され、これは船舶の競争力とビジネスの見通しをその運用効率に結びつけることを目指しています。今後、評価の低い船舶はビジネスや資金調達を確保するのに苦労する可能性がありますが、トップ評価の船舶は競争優位を持つ可能性があります。   リスクと機会のバランス  その結果、代替燃料の使用を先駆けて行う船舶所有者には、大きな潜在的な利益があります。しかし、この戦略はリスクを伴います。新しい燃料への移行は、船舶の安全性、復原性、構成に大きな影響を及ぼし、新しい貯蔵タンクの統合を必要とします。これにより、貨物容量が減少し、したがって商業的な利益性に影響を与える可能性があります。それを正しく行うことは重要ですが、どのようにすればよいのでしょうか? 答えの一部は、私たちが既に手元にあるツールをどのように使用し、組み合わせるかについて創造的に考えることにあります。ここでは、運航シミュレーション機能と3Dツールを船舶設計に一緒に使用することで、多くの洞察を得ることができます。   運航データが船舶設計に新たな洞察をもたらす方法   これはすでに現実のものであり、船舶設計者や技術者は、運航シミュレーションモデルを使用して、未来の船舶が航行するルートの天候や海の状況の範囲について詳細な画像を得ることができます。  この分析は、風速と風向、波高とうねり、および流速と流向に関する過去のデータによって支えられています。そこから、NAPA Designerで作成された3Dモデルを使用して、直接強度分析と荷重評価を行うことができ、未来の船体へのストレスを現実的な方法でシミュレーションを行い、それに応じて設計を調整するのに役立ちます。     このデータ駆動型の天候と海洋状況の画像は、特定の船舶に対して風力推進システムが実際に達成可能な排出削減をシミュレートするためにも使用できます。これにより、船舶所有者は、これらのシステムへの投資を行う前に、より確実性を得ることができます。 多燃料時代に入るにつれて、運航シミュレーションは、未来の船舶が航行する速度の範囲や未来の燃料消費量についての貴重な洞察をもたらすこともできます。これにより、必要なエンジンの最適な出力を決定するだけでなく、船舶に必要な燃料タンクのサイズ決定にも役立ちます。アンモニア、水素、メタノールなどの未来の燃料は、化石燃料に比べてエネルギー密度が低いため、この評価を正しく行うことは、貨物スペースの損失を最小限に抑えるために重要です。       最善の決定を下すためのオプションの比較  運航シミュレーションから得られた洞察とデジタルツインを組み合わせることで、様々な設計バリエーションをテストし、それらが現実の世界でどのように動作するかのモデル化が可能になります。例えば、3Dモデルを使用して、代替燃料を使用する船舶の色々な構成を比較し、船舶の未来の性能、燃料消費、GHG排出、復原性パラメータ、および流体力学的プロファイルに及ぼす影響を計算することができます。 このような形状やプロファイルを簡単にテストする能力は、船舶設計者や技術者が、新しいシステム(例えばバッテリーや追加のタンク)を船舶のどこに設置すべきかを評価することに役立ちます。これには、必要な総容量だけでなく、安全を確保するためにそれらを設置する必要がある場所も考慮に入れます。 これらのシミュレーションは、初期設計段階から行うことができ、設計が進行し詳細が確定するにつれて結果の精度は向上します。具体的には、チームはプロセス全体で異なるオプションを試すことができ、設計が初期段階から構造的で詳細な段階に進むにつれて行わなければならない複数の決定をサポートします。言い換えれば、シミュレーションツールは「推測作業」を排除し、データと証拠に基づいた決定を後押しします。     排出量とコストの見積もり – 数百万ドルの問題 船舶所有者にとって、これは重要です。なぜなら、彼らは初期設計段階から、LNGやメタノールなどの異なる燃料オプションが現実の世界でどのように見えるか、またそれらが貨物容量と予測される燃料消費にどのような影響を及ぼすかについて、より良い理解を得ることができるからです。船舶の設計が形になるにつれて、シミュレーションツールはその未来のGHG排出量をモデル化し、これが環境規制の遵守にどのように影響するかを示すことができます。   最終的には、これらの推定排出量を使用して、燃料自体の購入と異なる燃料オプションの排出許可の関連コストを予測することが目指されます。シミュレーションは、例えばEU ETSの下で設計がコスト競争力を持つようになるタイミングを示すことができ、これは大きな商業的価値をもたらし、新しい燃料と船舶設計の選択を最初から助けることになります。    私たちは未来を予測することはできませんが、データに基づいてそれをモデル化することはできます – 革新的な船舶設計のために、それはすでに大きな変化をもたらしています。 

Read Article

SDARI、BV、NAPAの共同プロジェクトが3Dモデルベース船級承認の利点を検証

2023年11月20日:世界的な試験、検査、認証のリーダーであるBureau Veritas(BV)、上海船舶設計研究院(SDARI)、そして海事ソフトウェアおよびデータサービスのグローバルプロバイダーであるNAPAは、3Dモデルによる船級承認を可能にする共同開発プロジェクト(JDP)の第一段階を完了しました。 プロジェクトでは、設計者が提供した3Dモデルを直接利用し、複数の変換を必要とする従来の2D図面に基づく従来の船級レビューではなく、3Dモデルに基づく承認(3D MBA)の実現可能性が確認されました。この取組みの目的は、設計プロセスの効率を向上させ、時間とコストを節約すると同時に、造船所、船舶設計者やエンジニア、船主、そして船級協会など、設計に関わるすべての関係者間の精度とコミュニケーションを向上させることです。      

Read Article

DNV、Damen、NAPAが3Dモデルで船舶設計承認を合理化

Damen、DNV、NAPAは、プロジェクトの初期段階における船級の関与を合理化するために、新しいオープンクラス3Dエクスチェンジ(OCX)規格を使用することにより、船舶設計プロセスにおいて大きな一歩を踏み出しています。 船舶の設計を迅速に提供しなければならないというプレッシャーが高まる中、船級協会が早期に関与することで、設計者や船主のコンセプト設計に対する信頼が高まり、プロジェクトの円滑な遂行が保証されます。市場の期待に応え、Damen Engineeringは、Commissioning Service Operation “Walk to Work”船(CSOV 9020)の新しい設計の初回レビューにDNVの船級協会の専門家に参加してもらうことを決定しました。共同作業は、OCXファイル形式による3Dモデルの交換と承認に基づく新しい最先端技術を使用し、プロジェクトの初期段階である設計提案書の作業中に開始されました。 新しいCSOVの設計は、OCXフォーマットでの3Dモデルのエクスポートが可能なNAPAの3D設計ツールを使用し、Damenの技術者によって開発されました。この機能により、DamenとDNVは同一の3Dモデルで並行作業が可能となり、2D文書の合意や準備に必要な時間と労力を節約することができました。     Damen EngineeringのManging DirectorであるKatarzyna Romantowska-Jaskólska氏は、次のように述べました: 「環境、安全、規制、その他の外部からの圧力と、これまで以上に優れた設計を生み出すという競争上の必要性が重なり、従来のやり方はもう通用しなくなっています。OCXフォーマットは、船舶設計の開発およびプロジェクト遂行プロセスの全関係者にとって有益な新しいアプローチを可能にします。DNVとNAPAとのコラボレーションにより、設計の初期段階におけるリスクを軽減しながら、各分野を結びつけ、迅速な意思決定を促進するソリューションにたどり着きました。」   NAPAのDesign Solution担当Executive Vice President、Mikko Forssはこう付け加えました: 「NAPAでは、関係者間の効率的な協力と迅速なフィードバックループを通じて船体構造承認プロセスを合理化することを最優先事項の一つとしています。いくつかの業界共同開発プロジェクトの結果、NAPAの3D設計ソリューションは、船舶設計者と船級協会間の効率的な情報交換をサポートし、より迅速で正確な承認を可能にします。OCXフォーマットのサポートは、3Dモデルデータの標準化されたやり取りを可能にし、効率的なコミュニケーションに必要な時間と労力を削減するため、この取り組みの重要な部分です。」   DNVのDirector of ApprovalのIvar Håberg氏は以下のように締めくくりました: 「船級協会が設計承認プロセスを開始するのが早ければ早いほど、造船所と協力して規則に準拠した優れた設計ソリューションを見つけるのが容易になります。3D設計モデルの情報交換にOCXファイル形式を使用することで、DNVは設計開発の初期段階から設計者や造船所とより効率的に交流し、協力することができます。」   OCXは、3Dモデルベースの船級承認のための新基準であり、異なる設計および船級ソフトウェアのプラットフォーム間の障壁を取り除き、理想化された形状とメタデータのシームレスな交換を可能にすることを目的としています。OCX 3Dモデルは、従来の2D構造図に代わって船級承認の用途に利用できるため、造船所の時間を節約し、船級協会が設計者のニーズに迅速に対応できるようになります。 OCX規格は、DNVが主導する業界共同プロジェクト「Approved(2016-2020)」の成果です。この規格は現在、2021年に設立されたOCXコンソーシアム(https://3docx.org)が共同で所有・管理しています。このコンソーシアムには30以上の業界リーダーが集まり、規格を共同で推進・維持しています。コンソーシアムのメンバーは、すべての主要船級協会、主要CADプロバイダー、複数の設計者や造船所で構成されています。   *****   Damen Engineering Gdańskについて Damen Engineering Gdańskは、船舶性能の最適化を強力に推進する、受注生産、ワンオフ船、プロトタイプ船の能力センターです。 Damen Engineering Gdańsk は、オランダのオフショア専門船B.V.の子会社です。それ以来、能力、スキル、知識を発展させ、2023年には情熱と熱意のある従業員が170人に達するまでになりました。成長するチームは、船舶設計技師、機械技師、電気技師で構成されています。プロジェクトをより適切に管理し、最終製品の確実性を高めるために、Damen Engineering Gdańskではプロジェクトマネージャーとサプライチェーン・スペシャリストの強力なチームを編成しています。これらの能力を組み合わせることで、可能な限り最高品質の製品を、予定通りの納期と予算で提供することができます。   NAPAについて NAPA社は30年以上の歴史を持ち、船舶の設計と運航のためのソフトウェアとデータ・サービスを提供するリーディング・カンパニーです。NAPAはフィンランドに本社を置き、200 名の専門家を擁し、造船工学、船舶運航、デジタル・サービスの専門知識を結集しています。NAPAは日本、韓国、中国、シンガポール、米国、ドイツ、ギリシャ、ルーマニア、 インドでグローバルに事業を展開しています。 新造船の90%以上がNAPAの顧客によって建造されており、NAPAの船舶設計ソフトウェアは造船における世界的なデファクトスタンダードとなっています。さらに、NAPAは客船の安定性管理と安全データサービスのマーケットリーダーであり、船舶性能モニタリングと運航最適化のためのクラウドベースのソリューションは、海運の脱炭素化の旅をサポートしています。詳細はwww.napa.fiをご覧ください。 […]

Read Article

Information Hub: 船舶設計の技術革新を推進し、実際の課題を解決

設計の自動最適化や情報共有の改善、3D設計・承認プロセスなど、私たちは日々パートナーと協力し、新しい設計プロセスの創造に取り組んでいます。

Read Article

【顧客事例:現代重工業様】3Dによる構造設計プロセスの革新の取り組み

NAPA Steelの導入により、設計者がより機敏で洗練されたプラットフォームで共同作業を行うことで、設計プロセスを効率化します。  (写真下)提供:現代重工業  Background:背景と概要  2016年、世界最大の造船所である現代重工業(HHI)社は、3Dモデルに基づく船舶構造設計ツールであるNAPA Steelを構造設計部門に導入しました。 これはHHI社にとってパラダイムシフトであり、2D図面ベースのプロセスからの移行を促進するものでした。NAPA 3D構造モデリングの直感的な操作性により、ユーザーは船舶全体に対して1つの柔軟な3Dモデルを作成することができました。HHI社は、船級協会の規則チェック、承認図面の作成、FEモデルの作成、重量計算、その他多くの業務など、構造設計プロセス全体で、これらの3Dモデルを活用しました。  NAPA 3Dモデルと構造設計の各種データや図面を連携させることで、設計品質が向上するとともに、共通情報の共有化や更新作業の簡素化により、人的エラーの発生確率が減少しました。  Challenge:課題 それ以前のHHI社の設計プロセスは、従来的な2Dアプローチに基づいていました。このアプローチでは、2D図面が異なる関係者間の情報共有の中心的役割を果たしていました。例えば、規則チェックやFEモデルの担当者間の手作業による情報交換を、2D図面が仲介していました。    このプロセスは親しまれ、長年の実績がありました。しかし2016年、HHI社は、世界中の他の多くの造船会社と同様に、変化する規制や進化する船主要求に応じるために、まったく新しい船の設計を行い、設計プロセスを一新しなければならない状況に直面しました。そのためには、より高度な設計ソフトウェアが必要となりました。 NAPA solution:NAPAによる解決策  長い評価期間を経て、 NAPA Steel は大きなメリットをもたらしました。  1つの統合されたデータベース  重量、塗装面積、溶接の長さなど、あらゆる船体情報を含む  すべてのユーザーが同じ情報を利用できる   FEモデルと船級ソフト用の入力データの抽出が容易である  承認図面の作成が容易である  柔軟なモデル  設計パラメータ、船型、フレーム間隔、主要部材を簡単に変更できる  最適な船体構造の設計のための設計案を素早く検討できる  情報共有  他部署での3Dデータの利用が可能である(詳細設計、艤装設計など )  複雑な構造を直感的に理解できる3Dビューワ  設計プロセスへの対応  柔軟な設計ツールにより、契約前の段階で3Dモデルの作成が可能である  船の契約交渉時に、重量推定などに活用できる Results:成果 2016年に実施されて以来、NAPAとHHI社は常に設計プロセスを見直し、改善し、NAPAの最も効果的な使用方法を共同で模索してきました。その結果、目覚ましい成果が得られました。  HHI社は、新造船プロジェクトにおいて、FEM、図面作成、船級計算にかかる貴重な設計工数を削減することができました。  具体的には、DNVの規則算式ソフトのための形状、板、骨材などの情報は、NAPAに切り替える前はすべて手作業で入力する必要がありました。NAPA Steelを使用すると、NAPA Steelモデルから規則計算用の断面情報をほぼ自動的に、最小限の修正で作成することができるようになりました。  同様に、2D図面ベースのプロセスでは、設計者が設計変更に伴う重量変化を見積もることは困難でした。これが今ではNAPA Steelで簡単にできるようになりました。  また、図面間の不整合を、より早く正確に解決することで、作業の質も向上しました。更に、次の設計段階(詳細構造設計)に正確な設計情報を伝えることができ、詳細設計からの改善やフィードバックの反映が容易になったことも、NAPA Steelの効果です。  結果として、これによりHHI社は3Dモデルベースの承認の実現に大きく近づきました。この承認方法は、造船所、船級協会、ソフトウェア会社から、船舶設計に不可欠な進化であると認識されています。最近、NAPAがICCASに寄稿した論文によると、3Dモデリング、2D図面、ルール計算、直接強度計算といった異なる段階で設計作業が分断されていることに起因する特有の問題があることがわかりました。設計者は、修正が発生するたびに、すべての段階で修正を行う必要がありました。同様に、構造設計者は各段階で異なるソフトウェアを使用する必要がありました。そのため、作業量が増えるだけでなく、複数人で違うソフトを使い分けて作業をしなければなりませんでした。また、3D CADモデルと規則チェック用モデルの間に不一致が生じていました。つまりは、構造設計者がプロセス全体を把握できなくなり、設計全体の最適化が困難になっていました。  Conclusion:結論 結局のところ、3D設計と2D規則チェックを分業して進める従来的な方法は、船舶設計者による設計の可能性を制限してしまうことになります。それは設計プロセスに不必要な摩擦をもたらし、別々のチームが別々のソフトウェアを使って別々のモデルに取り組むというサイロ化した作業を助長します。船は3次元の物体であり、それに合わせて設計や評価を行う必要があります。そして、3Dモデルベースの承認への移行は、これをはるかに容易にします。  3DモデルをHHI社の設計プロセスに完全に統合し、さらなる効率化を実現するには、まだ長い道のりがあります。現在の3D設計プロセスにおける課題のひとつは、船級協会や船主など他のステークホルダーが依然として2D図面を使用していることだとHHI社は考えています。図面は、未だ船主や船級協会からの設計承認の基礎となるものであり、しばらくは3D設計プロセスの中にとどまることになります。HHI社とNAPAは、3Dから簡単に図面が作成できることに加え、まずは船級協会と協力して、3Dモデルに基づく完全な承認プロセスを確立することを目指します。  HHI社は、3D設計プロセスのパラダイムシフトを加速させていきます。今後の道筋は明確です。3Dモデルベースの構造設計を採用することで、大幅な時間短縮とエラーの減少を実現し、HHI社はより合理的で強固な設計プロセスへの道を歩んでいきます。    HHI社の事例の概要  Background :背景 と概要  HHI社は、さらに複雑化する船舶設計に対応するため、よりダイナミックで機動的な3Dモデリングツールを求めていました。3Dモデルに基づく船舶構造設計ツールであるNAPA […]

Read Article