Tag: 3D Model
川崎重工業 – 斬新な大型液化水素運搬船で船舶設計の限界を押し広げる
このプロジェクトは、大型液化水素(LH2)運搬船というコンセプトの大きさだけでなく、川崎重工業の技術者や船舶設計者のチームにとって、まったく新しい船型設計を実現するという技術的な達成を意味する、あらゆる面において大規模なものでした。この画期的なコンセプトを実現するために、NAPAツールでどのように設計上の課題を克服したかをご紹介します。 日本の神戸と坂出に造船所を持つ川崎重工業(KHI)の造船部門は、LPGやLNG運搬船、VLCC船、潜水艦などの高価値船を専門としています。同社は、2019年に就航した世界初の液化水素運搬船「すいそふろんてぃあ」の建造で注目を集めました。 脱炭素経済の進展に伴い、水素(およびそれを輸送する船舶)の需要が高まる中、川崎重工は16万m3の水素を液化した状態で輸送できる大型LH2運搬船コンセプトの開発に着手しました。全長346メートル、4つのタンクを備え、水素燃焼ボイラーと蒸気タービンで推進します。 斬新な船舶設計への挑戦 このような革新的な船舶をゼロから設計することは、決して簡単なものではありませんでした。「まったく新しいコンセプトを開発する場合、基準となる参考船はありません。」と川崎重工業で商船の船体や貨物タンクの構造設計を担当する吉田隆太氏が語ります。 その結果、技術者や船舶設計者は、船体の鋼材重量や重量配分を推定し、主要寸法を決定するために、従来の船舶設計に頼ることができません。さらに、LH2のタンクや断熱システムなど、数多くの新技術を採用した設計であったため、船体構造や艤装品配置への影響を慎重に考慮しながら開発する必要がありました。 そのため、KHIのチームは包括的な構造研究を主導し、設計プロセスを通じて何度も繰り返しを管理する必要がありました。斬新なコンセプトデザインの課題を克服するためには、設計プロセスを可能な限り合理的かつ効率的にする適切なツールが必要でした。そこで出番となったのがNAPAツールです。 NAPA Steelを使用することで、船舶の重量を迅速かつ正確に見積もることができ、有限要素(FE)モデルを簡単に作成することができました。また、艤装品の仕様変更に応じてモデルを迅速に修正し、構造を検討することができたので非常に助かりました。 - 川崎重工 船舶設計担当 吉田隆太氏 船舶設計プロセスの再考 イノベーションを最大限に発揮するために、KHIのチームは従来の船舶設計プロセスの限界を克服する必要がありました。従来、艤装品や詳細な構造設計は、船舶の一般構造が確定した後の設計後期に行われていました。しかし、大型LH2運搬船のようなまったく新しいコンセプトの船では、これらの段階をプロセスのかなり早い段階で行う必要がありました。これは、詳細設計段階で大きな問題が発生し、構造全体の大幅な手直しが必要になるリスクを避けるために不可欠です。 船型、カーゴタンク、艤装システムの開発は、設計の初期段階から着手することが理想です。そこで川崎重工業は、NAPAツールを活用した「先行設計業務」を開発しました。 実際、KHIのチームはNAPAを使って3Dモデルを作成し、最初の開発段階から初期設計、詳細設計の段階まで役立てました。モデルを素早く編集できる利点を生かし、船体構造の設計と艤装品の配置を同時に検討することができ、これらの評価を複数回繰り返して異なるバリエーションを効率的に検証する柔軟性も備えていました。 これにより、設計の初期段階から、まったく新しい技術やシステムの搭載を高い精度で検討し、それに応じて基本構造を更新することが可能になりました。これには、技術者が3Dモデルを迅速かつ容易に修正できるNAPA Steelが役立ちました。「NAPAなしではこの仕事はできませんでした」と吉田氏は強調します。 この「先行設計」アプローチにより、詳細設計段階からの知見を、初期段階からさまざまな設計バリエーションの評価に含めることも可能になりました。これには、工法や工程、縦方向の補強材の配置などの検討が含まれます。 その結果、見えない課題を早い段階で発見することができ、後々の設計のやり直しを防ぐことができました。– 川崎重工業 船舶設計担当 吉田隆太氏 サクセスストーリーの構築 設計プロセスの改善は成功しました:KHIの大型LH2キャリア・コンセプトは2022年4月にClassNKから基本設計承認(AiP)を取得し、初期設計とその安全性が第三者によって検証されました。「NAPAがなければ、早い段階から構造検討を繰り返す設計プロセスを実施することは難しかったでしょう」と吉田氏は付け加えました。 また、NAPAツールによって坂出と神戸の両チームが同じデータベースを共有しながら同時に作業を進めることができ、効率向上にも貢献しました。今後は、船体構造設計だけでなく、カーゴタンクの開発支援にもNAPAツールの活用を広げていきます。具体的には、タンクのパラメトリックモデリング、FEモデル出力、重量推定などを早期に実施します。また、社内のモデルレビューを容易にするためにNAPA Viewerの利用も計画しています。 川崎重工は、エネルギー転換の進展により革新的な船舶への需要が高まる中、事業成功の基盤を構築していきます。「脱炭素社会への移行に伴い、新燃料を動力源とする船舶や新燃料運搬船の開発が既に活発に進められています。このような新しい船舶の開発には、多くの研究・設計要素が複雑に絡み合いますが、NAPAを用いた3Dモデルベースの設計は、このような複雑な問題を解決するのに役立ちます」と吉田氏は締めくくりました。
Read Article3月 21, 2025
Chantiers de l’Atlantique社、デジタルシップヤード機能向上へ構造設計用にNAPAを採用
欧州最大級の造船会社が、3Dベースのワークフロー、革新性、船舶設計の効率性の強化に向けて、船体構造設計の初期設計から生産設計に至るまでの段階でのNAPA導入を決定いたしました ヘルシンキ(フィンランド)およびサン=ナゼール(フランス)2025年3月11日: 欧州最大級の造船会社であるChantiers de l’Atlantiqueは、海事産業向けソフトウェアおよびデジタルサービスの世界的プロバイダーであるNAPAと協力協定を締結し、先進的な3Dソフトウェアおよびデジタルワークフローを共同開発することになりました。今後は、更なる船体構造設計プロセスの効率向上を目指します。 両社は、業界をリードする3D構造設計ツールであるNAPA Steelを活用し、Chantiers de l’Atlantiqueの詳細設計プロセスのデジタル化および改善に取り組みます。また生産設計段階で使用されるソフトウェアとNAPA Steelを統合することで、基本設計から生産設計に至るまでの段階で、技術者や造船設計者のチームが船体構造設計や艤装設計チームと迅速に連携しながら作業できるようになります。この改善により、Chantiers de l’Atlantiqueは設計の複雑化に対応しつつ、効率的で安全かつ革新的な船舶を求める顧客のニーズに応えられるようになります。 このデジタル化に向けた大きな飛躍は、基本設計から生産設計に至るまでの設計プロセスのすべてのニーズには単独のソフトウェアだけでは対応できない、という認識に基づいています。こうした課題に対応するため、Chantiers de l’Atlantiqueは、より実用的な「ベストオブブリード(best-of-breed)」手法を採用しました。これは、特定の機能を果たすために異なるソフトウェアを組み合わせる、という手法です。 本取り組みでは、構造設計、推進システム、電気設計、一般配置設計、重量推定担当の技術者を結集し、複雑な要件と頻繁な変更のために機敏性と精度が求められる造船プロジェクトにおいて、スムーズな連携と最適なパフォーマンスを実現できるようになります。さらに、NAPAの3Dモデルと生産設計用3Dモデルの連携によって、構造設計チームが作成した3Dモデルを艤装設計や生産設計の担当チームがより早い段階で利用できるようになり、今後造船現場での時間短縮と業務効率向上につながります。 この新たな契約は、NAPA Steelの導入によって造船設計のワークフローが効率化され、具体的な時間とコストの削減につながることの確認に成功したパイロットプロジェクトに続くものです。特に詳細設計において、3Dベースの設計ツールと統合ワークフローの導入を強化することで、NAPAは今後もさらなる業務効率化、協業の促進、そして設計品質の向上に貢献していきます。 NAPAとの提携は、Chantiers de l’Atlantiqueの「デジタルシップヤード」戦略における新たなマイルストーンとなりました。フランスのサン=ナゼールに本社を構える同造船会社は、クルーズ客船や軍艦、洋上構造物等の建造を専門としています。 Chantiers de l’Atlantique社 CEOのLaurent Castaing氏は次のように述べています: 「当社は、NAPAとの協力によってより安全でスマートかつ効率的な次世代船舶の建造水準を引き上げることができます。クルーズ客船や軍艦、洋上構造物といった高度な船舶の建造で世界を牽引する当社にとって、より複雑化する設計を管理していくことは極めて重要な課題です。そのためには、船舶の設計から生産のフェーズにわたる効率的で合理化されたワークフローが不可欠です。迅速に対応できるツールとデジタルプロセスの活用がそのワークフローの中核を成しており、当社がさらなるイノベーションを推進し、効率的で将来性のある設計を求めるお客様のニーズにお応えできます。」 NAPA CEO のMikko Kuosaは次のようにコメントしています:「Chantiers de l’Atlantiqueとともに、同社のデジタル・シップヤード構想を新たな高みへ導く取り組みは、我々にとっても非常に刺激的なものでした。3Dベースのデジタルツールとワークフローをより活用するソリューションを共同開発することは、造船設計の未来を切り開き、協業と効率性を新たなレベルへと引き上げる重要な鍵となります。これは、海運業界のエネルギー転換のための革新的な船舶の需要が高まる今日では、これまで以上に重要になっています。デジタル時代は、造船会社にとってイノベーションを生み出す強固な基盤を提供するとともに、生産性を向上させ、持続可能なビジネスを維持するための支えとなります。」 – ENDS – 編集者の皆様 Chantiers de l’Atlantiqueについて Chantiers de l’Atlantiqueは、その専門チームと協力会社のネットワーク、そして一流の建造設備により、クルーズ客船、軍艦、洋上風力発電所向けの変電設備、および船隊向けサービスの設計、統合、試験、ターンキー納品の分野におけるリーディングカンパニーです。同社は未来への挑戦の中核を担っており、今日の環境性能が最も厳しい基準を超える船舶や、エネルギー転換の主要な担い手となる洋上風力発電向けの設備を設計・建造しています。 NAPA について NAPAは、世界の海運業界向けにソフトウェアおよびデジタルサービスを提供するリーディングプロバイダーです。データサイエンスを活用し、安全性の向上、持続可能性の促進、そして未来に適応した海運の実現を支援しています。1989年に船舶設計のスマート・ソリューションを提供する企業として設立され、現在では造船業界の世界的な基準として認知されており、新造船の90%以上がNAPAの顧客によって建造されています。 今日、NAPAの専門知識は船舶のライフサイクル全体にわたり、建造から航海中の安全性や効率性までをカバーしています。世界で3,000隻以上の商船が、NAPAの安全性および効率性に関わるソリューションを採用しています。 フィンランドに本社を置くNAPAは、200名のエキスパートを擁し、日本、韓国、中国、シンガポール、米国、ドイツ、ギリシャ、ルーマニア、インドに拠点を持つグローバル企業として活動しています。 詳しくは www.napa.fi/jaをご覧ください。 Media contact: […]
Read Article3月 12, 2025
4つの主要な日本の海事関連企業がデジタルツインプロジェクトに参加
業界を代表する企業が、船舶の設計および運航データの共有方法を変革し、デジタルツインの導入障壁を克服する取り組みを支援へ 【東京(日本)/ヘルシンキ(フィンランド)、2025年2月25日】 国内の海事産業を牽引する、川崎汽船株式会社、旭洋造船株式会社、三井E&S造船株式会社、住友重機械マリンエンジニアリング株式会社の4社が、業界横断型の共同プロジェクト「デジタルツインプロジェクト」に新たに参加いたしました。 この新たな参画は当プロジェクトにおける「フェーズ3」に当たり、造船会社と海運会社で安全なデータ共有フレームワークを構築し、船舶のライフサイクル全体におけるデジタルツインの活用を推進することを目的としています。これにより、運航の効率化と安全性の向上を図り、参加企業は、設計・運航データの共有に関する様々な課題克服に向けたデータ共有の可能性についてさらなる議論を重ねていく方向です。 多様なステークホルダーとの緊密な協力を通じ、本プロジェクトでは船舶設計段階で作成された3Dモデルを安全かつアクセス管理が行われたデジタル環境で共有できる新しいプラットフォームの開発を目指します。また、運航データを造船会社へフィードバックすることで、貴重な知見を提供します。これにより、造船所やソリューションプロバイダーに新たな事業機会を創出するとともに、関係者間での利益共有の仕組みを構築することが期待されます。 本プロジェクトには、すでに業界を代表する海運会社や造船会社が参加をしています。今回参加した4社に加え、既存メンバーである日本郵船株式会社、同社グループの株式会社MTI、株式会社商船三井、総合商社の丸紅株式会社、また同社グループのMMSLジャパン株式会社他、造船会社から今治造船株式会社、ジャパンマリンユナイテッド株式会社、株式会社臼杵造船所ほか、ソフトウェア・データサービスプロバイダーのNAPA、船級協会の一般財団法人日本海事協会が一丸となって、さらなる発展に貢献していく予定です。 日本海事協会のデジタルトランスフォーメーションセンター長 佐々木吉通氏は次のようにコメントしています:「この重要なデジタルツインプロジェクトに新たな参加企業を迎えられたことを大変嬉しく思います。今回の4社の新たなご参加により、本プロジェクトには海運業界のよりさまざまな分野の専門家の知見が集結することとなりました。この協力関係を活かしつつ、今後もデジタルツイン技術の発展に向け、取り組んでまいります。」 NAPA Studios担当 NAPA Group 副社長 兼 NAPA Japan 代表取締役社長 水谷直樹は、次のようにコメントしています:「この著名な新規参加企業の加入は、デジタルツインプロジェクトの大きな節目となります。本プロジェクトは、NAPA Studiosの取り組みの一環として、船主、用船者、造船会社、船級協会、金融機関、保険会社などを結び付ける共同プロジェクトの中核を担っています。これにより、新技術や契約導入の実務的な影響を明確にし、ネットゼロへ向けた新たな技術および運用フレームワークの開発を支援します。すべての参加企業の皆様に感謝申し上げるとともに、今後の協力のさらなる発展を楽しみにしています。」 住友重機械マリンエンジニアリング株式会社の取締役営業・技術本部長 舛谷明彦氏は、次のようにコメントしています:「当社がこの革新的な取り組みに参加できることを大変誇りに思います。既存の海運技術、特に風力推進技術などと、最先端のICTおよびデジタル化技術を統合し、業界の発展に貢献していくことを目指してまいります。」 現在、デジタルツイン技術を効果的に活用することで、船舶ごとの独自の設計特性や性能を深く理解し、脱炭素化に向けた意思決定の支援が実現できると考えられており、当技術は海運業界のエネルギー転換を支える強力なツールとなります。本プロジェクトがさらに勢いを増して進展する中で、今年2025年の商業的展開が期待されています。 編集者の方々へ 一般財団法人日本海事協会(ClassNK)について 一般財団法人日本海事協会は安全性と環境保護を目的とした第三者認証機関として1899年に設立され、船舶や海洋構造物の検査・認証を実施しています。100以上の船籍国からの委託を受けて、独自の規則や国際条約に基づく認証業務を提供、ISOなどの管理システム認証も実施しています。海事産業におけるデジタル化や、脱炭素化に向けた課題に対応するため、業界と連携し、認証サービスの拡充や研究開発を進めています。 詳細はwww.classnk.com/hp/ja/をご覧ください。 NAPAについて NAPAは、海運業界向けのソフトウェアおよびデジタルサービスのリーディングプロバイダーとして、データサイエンスを活用した安全で持続可能な未来の船舶の運航を支援しています。1989年に船舶設計向けのスマートソリューションを提供する企業として設立され、現在では造船業界におけるグローバルリーダーとして90%以上の新造船にNAPAの技術が活用されています。現在は、船舶のライフサイクル全体にわたる運航の安全性や効率性向上を支援し、全世界3,000隻以上の商船でNAPAのソリューションが使用されています。 本社はフィンランドにあり、日本、韓国、中国、シンガポール、米国、ドイツ、ギリシャ、ルーマニア、インドなどで事業を展開しています。 詳細はwww.napa.fi/ja/をご覧ください。 本件に関するお問合せはこちら:
Read Article3月 10, 2025
より良く、そして環境に優しい船舶設計を目指しますか?運航データがその力になります。
シミュレーションツールは、航海最適化や、運航の安全性と持続可能性を高める高度な復原性ソフトウェアの基盤としてよく知られています。そして今、このデジタルツールに新たな役割が生まれつつあります。それは、設計段階で仮想的に新しい船舶のコンセプトを試すことで、船舶設計におけるイノベーションを推進することです。 海運業界は今、様々な燃料やエネルギーを必要とする時代を迎えようとしており、それはますます個々のニーズに合わせた設計と同義語になっていくでしょう。燃料や技術の選択肢は、船舶の種類や用途によって最適なものが異なります。また、最も適切なソリューションは、船舶の運航状況や航行ルートによっても異なります。 例えば、最近、タグボートやフェリーにバッテリー技術が採用されたことは、これらのシステムが、特定の近海航路を航行する小型船舶に特に適していることを示しています。一方、風力推進システムは、強力で安定した風が吹く外洋航路の船舶に最も効果的です。寄港地で燃料補給ができるかどうかも、LNG、メタノール、アンモニアなどの代替燃料に関する決定に影響を与えるでしょう。 しかし、これは、こうした斬新なコンセプトの開発を担当するエンジニアや船舶設計者が、設計段階で下さなければならない多くの決定事項の内のほんの一部にすぎません。課題は、新しいエンジン、タンク、技術を統合することだけでなく、安全性、効率性、収益性の観点から、これらの設計が海上で有効であることを保証するために、適切な構成、寸法、積載量、強度、船体形状を選択することにあります。 最終的な目標は、船舶設計者が設計の初期段階から、新しい船舶コンセプトが就航後にどのような性能を発揮するかをモデル化できるようにすることです。迅速かつ簡単にこれを行えるようになるのが理想的です。そうすれば、様々な検証を繰り返し行い、コンセプトを確実に最適化することができます。 従来、設計者は類似船のデータに基づいてこれらの評価を下してきましたが、このデータは不完全であることが多く、また、過去において平均的にうまく機能してきた簡略化された規則に基づいて作成されている場合があります。このアプローチは、船舶設計にとってもはや最適な方法ではなく、技術革新を阻害する恐れもあります。さらに、過去のデータが存在しない全く新しい設計の場合はどうでしょうか?その答えは、すでに船舶の運航で広く使用されているツールにあり、それを船舶設計のための新たな見識を引き出すために再利用することです。 未来のパフォーマンスをシミュレーションする3つのステップ 実際の業務ではどのように行われるのでしょうか?類似船舶のデータが入手できない場合でも、以下の3つのステップに従うことで、未来の船舶性能をモデル化することができます。 ステップ1:流力性能モデルの作成 船舶の設計に使用された3Dモデルに基づいて、流力性能モデルは、特定の船舶がさまざまな速度や海象条件下でどのように機能するかを把握する。 流力性能モデルをゼロから構築することは、多大な時間と労力を要する作業になる可能性がありますが、その必要はありません。NAPA性能モデルは、世界中のすべての既存の船種とサイズに対応する基準モデルを提供し、この分析のための最適な枠組みとなります。その後、新しい設計の独自の特性を反映したデータによって調整されます。 ステップ2:運航計画の決定 これは、本船が運航される地域や寄港地だけでなく、想定される速度の範囲や本船が受ける積付条件についても概要を示すものです。 これは、すでに船舶の運航状況を詳細に把握している修繕計画においては容易なことですが、新造船の場合は、AISデータから多くの情報を得ることができます。NAPAのデータベースは、数年にわたる6万隻の船舶のAISデータで構成され、このデータの意味を理解し、船舶タイプや サイズごとにフィルタリングするなどのアルゴリズムによってサポートされています。実際、このデータベースは、どの地域で、どのようなタイプの船舶が、どのように運航されているかという貴重な情報を提供しています。 ステップ3:現実的な運航のシミュレーション 流力性能モデルと運航計画を一緒にすることで、特定の航路における未来の船の性能をモデル化することができます。 NAPA Voyage Optimizationはまさにそれを実行するように設定されています。このツールは天候に左右される航海のために作られたもので、複数の航路バリエーションにおける船の挙動をシミュレートすることで、世界のどこでも2つの港を結ぶ最適な航路と速度分布を決定します。 その第一の目的は運航ですが、まだ図面にしか描かれていない船舶のコンセプトに対して、理論的な航海をモデル化する目的にも利用できます。 過去の気象データと、関連する海域や時期の統計的気候データを使って、船舶が運航する海域の気象条件や海況を再現します。そうすることで、未来の船舶の速度範囲、エンジン負荷、燃料消費量、運航中の温室効果ガス排出量をモデル化することができます。 よりエネルギー効率の高い船舶の設計に加え、NAPAの運航シミュレーションツールは、より安全で耐久性の高い船舶の開発にも利用できます。船舶設計者は、未来の船舶の耐航性能を評価し、船舶がその耐用期間中に航行する現実的な条件や航海に必要な構造荷重を評価することができます。 船舶設計者にとっての最大の利点は、さまざまな設計の繰り返しにおいてこの分析をすべて繰り返し、船主独自の運航ニーズを満たすにはどのオプションが最適かを判断できることです。 ケーススタディ – 繰り返し設計の検証 これが実際にどのようなものかを説明するために、バルト海のストックホルム、マリエハムン、ヘルシンキ間の航路に就航する新造RoPax船を例にとってみましょう。 私たちはまず、全長197メートル、幅31メートル、設計喫水7.1メートルの基本船型から始めました。その後、排水量(または重量)を一定に保ちながら、それぞれ寸法と構造を変えた3つのバリエーションを作成しました。 船体バリエーション 次のステップは、3港間の航路、スウェーデン群島での速度制限、入港時の低速などを考慮した運航計画を立てることです。これをもとに、2023年全体をカバーする26航海(2週間に1航海)のシミュレーションを行いました。 その結果、設計改善のための豊富な情報が得られ、未来の船は航行時間の約50%を全速力で、25%を港で過ごし、残りを低速で運航することが明らかになりました。これは、必要な推進力レベルを理解し、エネルギー効率を最大化するための適切なエンジン出力と構成の選択に役立つため、設計の観点からは貴重な知見です。 新燃料とエネルギー源のシミュレーション これをさらに一歩進めれば、将来の燃料消費量のシミュレーションを行い、特定の船舶のさまざまな燃料オプションのコストと排出削減効果を比較することができます。今後のEU ETSと FuelEU罰則を計算に含めることで、この10年間と将来における燃料コストを包括的に把握することができます。このようなシミュレーションは、新たな運航コストを考慮した場合、設計のバリエーションによる大きな違いを明らかにすることができ、最終的には船主の大幅な経費削減につながります。このような分析の不確実性は、予測される燃料価格と規制コストの精度に左右されますが、規制の状況や価格予測が明らかになるにつれて、運航シミュレーションツールはさらに強力になるでしょう。 将来を見据えた船舶設計のために、従来と異なる思考を なぜこのようなビジョンが重要なのでしょうか?なぜなら、海運業界が脱炭素の未来に向けて自信を持って前進するためには、船舶設計の選択と同じくらい重要な決定が、データと証拠に基づいて行われなければならないからです。 このシミュレーションは、既成概念にとらわれず、すでに自由に使えるシミュレーションツールを最大限に活用することで、今後先駆者となる船主が直面する最も重要な疑問の1つである、「新造船が安全で効率的、コンプライアンスに適合し、経営上のニーズに応えることができるか」、という問いに明確な答えを提供できることを示しています。 EUETS、FuelEU、IMOのGHG戦略など、新たな環境規制が導入され、エネルギー効率の高い設計や、最終的には新燃料への移行が求められる中、船舶設計の革新はもはや「あればいい」ものではなく、不可欠なものとなりつつあります。 今日、環境対応型船舶がより良い傭船料を獲得していることがすでに確認されており、特定の船種では割増料が1日あたり1万米ドル、あるいはそれ以上に達しています。しかし、より多くの船主に決断を促すためには、彼らの投資がいかに健全で、多くの場合20年以上に及ぶその耐用年数を通じて、彼らの資産がいかに将来性を保ち、コンプライアンスを遵守できるかを、確かなデータ分析によって証明する必要があります。 より広い意味で、これは船舶設計の革新を支える運航データの力を証明するものでもあります。海上に革新的な船舶の数が増えるにつれ、設計データと運航データの間に新たな架け橋を作る機会が私達にはあります。これは、実際の運航から得られる知見を設計プロセスに反映させ、将来の船隊の性能を向上させるためには非常に重要なことです。船主と造船会社が匿名化された安全なデータ共有に協力する必要がありますが、それだけの価値があるはずです。海事業会、人々、そして地球、すべてが恩恵を受けることになるのです。
Read Article10月 25, 2024
海運業界におけるデジタルツインの普及加速に向けた 業界横断型の協力体制を始動
日本における海運会社、造船会社、船級協会、ソフトウェア・プロバイダーが参加するデジタルツインプロジェクト始動で、船舶の設計と運航データの共有による新たな価値創造が実現、画期的進歩へ 東京/ 日本: 2024年5月22日 日本の海運業界を牽引する各分野のリーダーらはこのほど、造船会社と海運会社の間で安全なデータ共有フレームワークを構築し、船舶のライフサイクル全体を見通したデジタルツインの利用推進を目的とする業界横断型プロジェクトにおいて、その有効性を確認いたしました。 当プロジェクトは、船舶固有の設計データを活用することにより、海上における運航性能の効率性と安全性を改善し、また運航データを共有することで、船舶の新たな設計開発に活かすこと等を目的としています。当プロジェクトには、日本郵船グループである株式会社MTI、株式会社商船三井、丸紅株式会社が海運会社として参加、また造船会社からは今治造船株式会社、ジャパンマリンユナイテッド株式会社、株式会社臼杵造船所が参加し、ソフトウェア・データサービス会社のNAPA、船級協会として一般財団法人日本海事協会が参加しています。 今回の具体的成果としては、設計・運航等の機密性の高いデータの共有に関する障壁を乗り越えることにより、造船会社、船主、船舶管理者、用船者等のさまざまなステークホルダー間でのさらなるデータ共有拡大と、それによる新たな価値創造の可能性が確認されたことです。 当プロジェクト初期の2つのフェーズにおいては、船舶の設計に使用された3Dモデルデータを安全に共有し、船舶固有のデジタルツインの作成に使用することで、船舶のライフサイクル全体を通じて運航効率と安全性向上を支援する30以上の潜在的なユースケースが明らかになりました。 さらに積付最適化、船舶状態の監視、省エネ装置の評価をサポートするデジタルツインの3つのユースケースの実現可能性の検討を通じて、その有効性が確認されました。 今回のフィージビリティ・スタディ(実現可能性に向けた実証実験)を踏まえ、次のフェーズでは、設計段階で作成された3Dモデルを、安全かつアクセス制御されたデジタル環境下で共有できる新たなプラットフォームを開発するとともに、今後は商業的に使用できるよう、当革新的アプローチの実践に向けた新たなビジネスモデルを開発する予定です。これは、造船会社やソリューション・プロバイダーにとって新たなビジネスとなるだけでなく、ステークホルダー間で利益を共有する仕組みを創出できる可能性があります。なお、今回のプロジェクトのフェーズでは、プラットフォームが中立かつ公正であることを保証するため、中立的立場である日本海事協会が主導を行いました。 当プロジェクトは2025年の運用開始を目指しており、海運業界におけるデジタルツイン導入に向け、従来型の障壁を克服するため、設計・運航データの共有において画期的な進歩を遂げる可能性を示すものです。 当パートナーシップはまた、運航データを造船会社にフィードバックすることで、造船会社のコンセプトが実際の運航においてどのように機能しているかについての貴重な知見を提供し、それにより造船設計者やエンジニアが今後の船舶設計の改善に活かせる方法についても調査しました。 NAPA Studios 担当 のNAPA Group 副社長 兼 NAPA Japan 代表取締役社長 水谷直樹は次のように述べています: 「コラボレーションは、エネルギー転換に向けた新たなソリューションの開発や既存オペレーションの最適化や高度化を実現する基盤であり続けています。私たちの進めるデジタルツインプロジェクトは、進取の気性に富み、より安全で効率的、また環境により配慮した未来の海運の実現に向けて、設計データと運航データの橋渡しをするという新たな中間目標地点に到達しました。このプロジェクトはまた、業界の専門知識を最大限に活用するとともに、すぐに利用できる技術の可能性を最大限に引き出すことで、業界のバリューチェーン全体でステークホルダーと新たな形でのパートナーシップ構築に向けたより確かな可能性を秘めていると考えます。」 日本海事協会の佐々木吉通デジタルトランスフォーメーションセンター長は、次のように述べています: 「デジタルツインは、海運、特にエネルギー転換期における重要な資産です。デジタルツインは、船舶固有の設計プロファイルや特性に関する比類のない可能性を提供し、得られたデータを船舶の運航とメンテナンス双方の最適化に向けた活用に新たな機会をもたらすと同時に、今後、革新的技術を船上で展開できる可能性をより広げるものです。当プロジェクトは、より設計と運航が複雑化する中で、造船会社と海運会社間でのより緊密な対話促進に向け、いかにデータのサイロ化を断ち切ることができるかを実証するものでもあります。」 ***** 編集者の方々へ NAPAについて NAPAは、グローバルな海運業界向けのソフトウェアとデジタルサービスのリーディングプロバイダーであり、データサイエンスを活用して、より安全で、より持続可能で、将来にわたって有効な船舶運航を実現しています。 船舶設計のためのスマートソリューションを提供するために1989年に設立され、現在では同社の顧客が建造する新造船の90%以上に採用されるなど、船舶建造において世界的な基準となっています。現在、同社の専門知識は船舶のライフサイクル全体に及び、船舶設計から船舶の運航安全性と効率に至るまで網羅しています。世界中の商船約3,000隻が同社の安全性と効率性向上のためのソリューションを搭載しており、これには海上での安全管理に積極的に取り組むデジタル船舶復原性システム、新たな運航効率を導き出すための知見を提供するクラウドベースのパフォーマンスモニタリング、そして航海最適化ソリューションが含まれています。 フィンランドに本社を置く同社は、200人の専門家を擁し、日本、韓国、中国、シンガポール、米国、ドイツ、ギリシャ、ルーマニア、インドの拠点を通じ、世界中で事業を展開しています。 詳しくはこちら: www.napa.fi 日本海事協会 について 一般財団法人日本海事協会(ClassNK)は、1899年に設立された船級協会で、第三者認証を通じて安全と環境保全に貢献することを使命としています。独自規則及び約100か国の旗国政府を代行しての国際条約に基づく船舶・海洋構造物の検査・証明、ISO等に基づくマネジメントシステム認証など、多様な技術サービスを展開。日本海事協会では、包括的な認証サービスの提供や業界パートナーとの研究開発を通じて、海事産業のデジタル化・脱炭素化へのさまざまな挑戦を全面的に支援しています。 詳しくはこちら www.classnk.com 当記事に関するお問い合わせは以下よりお願いします。
Read Article5月 22, 2024
世界初の3D図面承認、NKが完了 日本郵船が自前で基本設計、「造船所との共創模索」
日本・東京ー2024年3月29日 ー 海事プレス(ニュース ー 造船・船用)にて、日本郵船がNAPA Steelで作成した3Dモデルを元に、日本海事協会が2次元図面なしで基本設計の承認を完了したことについて掲載されました。ぜひご覧ください。 日本郵船は28日、日本海事協会(NK)から新造多目的コンテナ船の基本設計で3D(3次元)モデルをもとにした図面認証を取得したと発表した。現在は平面(2次元)の設計図面で行われている新造船の船級承認を3D設計モデルで行う試みは各国で研究などが進んでいるが、外航の新造船で世界初。さらに、通常は造船所が行う新造船の基本設計を今回は日本郵船が自前で行った点が特徴で、「造船所の設計負荷が増加している中、これまで造船所に手渡していた部分も海運会社が並走し、造船所との新たな『共創』の在り方を探った」(中村利執行役員)。日本の海事産業の活性化を目的に、設計プロセスの効率化の核となる構造設計の3D化に先鞭をつけるとともに、造船所の設計負荷低減のための新たな新造船プロジェクトの在り方も模索した格好だ。 新造船の図面承認の3次元化は、近年の造船デジタル化での重要テーマの1つになっている。従来の二次元の図面は、船舶の複雑な構造を平面上に表現しているため、正確に読み取るためには長年の経験と高度な専門知識が必要。これに対して3Dのモデルであれば、設計担当者や海運会社など関係者が直感的に理解できるため、3D設計が徐々に普及しつつある。だが、3DCADシステムが会社や船種によって異なるため、船級協会に承認を申請する際には共通フォーマットの2次元図面にいったん変換する必要があり、さらに船級協会も受け取った2次元図面を3Dモデルに置き換えて評価システムで確認する必要があるなど、データ入力とモデル修正で双方に時間とコストが発生することが課題だった。このため各船級協会や造船所、海運会社が、3Dモデルのままで図面承認を行う検討を進めており、NKもこれまで日本郵船や国内造船所と協力して検討を進めていた。 今回は日本郵船が、船舶構造設計ツール「NAPA Steel」を用いて作成したコンテナ船の3D設計モデルのデータを、NKが船体構造設計支援システム「PrimeShip-HULL」上の連携システムを活用して、2次元図面に変換せずに基本設計段階の全ての図面承認を完了した。基本設計から船級承認まで3D図面で完了したのは外航船では世界初。「3Dと2Dが混在している現在の承認プロセスが、設計から承認に至るまで1つの3Dモデルで行えるようになることで、後戻りやミスもなくなり、品質向上や工数削減にも貢献できる」(NKの松永昌樹技術本部長)。NKとしては3Dによる図面承認の体制を整え、今後は造船所の利用の要望に応えていく方針だ。 また今回は、日本郵船が新造船のコンセプト開発だけでなく、造船所の所掌範囲である基本設計の段階まで実施したことが大きな特徴となる。背景には、船舶燃料の転換や船舶のニーズ多様化により、海運会社が多様な船を検討する必要性がある一方、造船所の設計負荷が増加していることがある。「造船所との『共創』の可能性を模索する必要性を感じており、例えば造船所の状況に応じて新規事業のフィージビリティスタディ段階のコンセプト開発程度は船社が自前で行うなど、造船所と柔軟に『双方よし』の関係を築く手段になるのではと考えている」(中村執行役員)。今回は、造船所と設計引き継ぎのポイントとして、「どこまで進めるのが心地よいかを検証する」ために、自前で基本設計まで実施した。 図面承認の対象となったのは、東アジアと南太平洋の島しょ国の間を航行する2万2000総トン型の多目的コンテナ船「アイランダー船」。船体後方にカーデッキ、前方にコンテナ用ホールドを配置した特殊船型で、就航中の4隻のうち2隻が船齢20年を超えており代替建造を検討している。今回の設計をもとに、国内造船所と具体的な新造船商談を進めている。 3D設計への転換は、海事産業のDXで中心的なテーマだ。「3Dモデルには2次元図面より多くの情報が含まれ、より詳細でスムーズなコミュニケーションが可能。早い段階から造船所の3D設計にわれわれ船社が関与することで、設計工数が低減できる可能性がある」(山本泰工務グループ長)。設計の初期段階から3Dモデルを活用してより多くの情報を作り込むフロントローディング手法への展開や、東京大学MODE講座が研究を進めるモデルベース開発の手法、就航後の船舶での運航支援や保守への適用など、日本郵船も船舶のライフサイクルでの3Dモデルの活用策を検討する。 *海事プレスから転載の許可を得ています。 海事プレス プレスリリース:https://www.kaijipress.com/news/shipbuilding/2024/03/183016/ PDF:世界初の3D図面承認、NKが完了日本郵船が自前で基本設計、「造船所との共創模索」 _ 造船・舶用 _ ニュース _ 海事プレスONLINE 海事プレスURL :https://www.kaijipress.com/
Read Article3月 29, 2024
効率を追求:VARDが10週間で実現した3D船舶設計
VARD Design & Engineering社のチームは大きな課題に直面しました:彼らは典型的な構造設計時間を3分の1に削減し、契約締結から船級承認 までを10週間で終えることができるでしょうか? NAPAの3Dベースのツールを駆使して、賢く、創造的に、そして協調的に働くことで彼らはこの難局を打開しました。彼らがどの様に速度と精度を両立させて大成功に導いたかをここで紹介します。 造船業界は変化の最中にあります。よりクリーンで安全であることを求める規則強化により、船舶の設計はしばしば急進的な革新を強いられます。納期も短縮され、その結果、設計者はより多くのことをより少ない時間で行わなければならなくなっています。 この様な状況により、伝統的な直線的な設計プロセスでは対応が難しくなり、より早い段階で設計を確定させることが必要になっています。そして、デジタル3D環境上のモデルという「信頼できる唯一の情報源」にアクセスでき、様々な分野の検討を同時に行うことを可能にする新世代の設計ツールが要求されるようになりました。 NAPAは、構造設計を含む一連のツールを先駆的に業界に提供してきました。これらのツールがどのように構造設計プロセスを変革し、加速させることができるかは、 VARD Design & Engineering社のチームが10週間で船級承認までを完遂させた事例によって示されます。これは通常のプロセスから4週間から6週間も短い期間です。 分散型および協調型エンジニアリング VARD社は難局を好機に変えました。同社は、オフショア再生可能エネルギー分野向けに4 19シリーズの設計をベースにした風力推進船を提供するビジネスチャンスがありました。しかし、同社の造船所の建造スロットで利用可能なものは、船級承認までを完遂させるための時間を考えると理想的とは言えませんでした。同スロットで建造するためには、通常の14-16週間から10週間に設計期間を短縮する必要があったのです。この様な期間短縮を実現するためには、設計チームと船級協会の双方の創造的な思考と協力が必要で、このようなニーズが協調型の効率的なプロセスを実現する不可欠な基盤になりました。 VARD社の主要なエンジニアリングオフィスはノルウェーのÅlesundにあり、11カ国に合計22の拠点を持っています。拠点と専門部門が地理的に広範に分散しているため、VARD社は分散エンジニアリングモデルを運用し、特に時間的制約が厳しい場合には機敏に対応できるようにしています。例えば、10週間で風力推進船を提供するために、クロアチアの設計オフィスのエンジニアがÅlesundに飛んで一連のタスクを完了させるのと並行して、ルーマニアのTulceaのエンジニアリングオフィスのスタッフがモデリング作業を行いました。 デジタルツールの中心的役割 NAPAの構造設計ソリューションは、初期段階から、事前調整に必要な構造細部を含む3Dモデルを容易に作成できます。機械部門と配管部門の担当者は並行して作業を行うことができ、必要に応じて船の構造は随時変更されます。 「私たちはNAPAという3Dツールを用いることによって、船を大きな視点からでも詳細レベルからでも見ることができます。それにより、私たちはÅlesundにいながら状況をよく把握でき、現場の造船所で問題が発生する前に見つけることができます。」— Lina Austigard、VARD Design & Engineering社のシニアエンジニア Austigard氏は、時間のプレッシャーが高まる中で、詳細設計を早期に開始できることが重要な利点であると強調しています。 NAPAはその様な設計の早期開始を実現できます。2Dでは必ずしも捉えられない欠陥、例えば、整合性が取れていない箇所や、現実にはありえないような区画などを見つけることができます。 個別要望を把握する 船級承認の所要時間である典型的な14-16週間の場合でも、詳細な作業を行うために設計チームと造船所とのコミュニケーションは多く必要となります。実際の建造船の開発にはさらに多くの時間が必要で、姉妹船であっても大きな差異があることがあります。 同じ市場向けであっても、異なるクライアントからは異なる要求を受けることがあります。例えば、風力推進船は通常、大きなと少なくとも一つの大きなクレーンが装備されますが、クライアントごとにギャングウェイの種類、使用方法、クレーンや他の機器の数についてこだわりがあります。また、宿泊施設に関しても、何人が船上で生活し、どのような居住水準とするのか、という点でも異なる要件があるかもしれません。 「新しいタイプの燃料への対応を志向するクライアントがますます多くなっています。私たちは、将来的に新しい燃料への改装を可能とする“新燃料対応準備済み”船を建造しています。」とAustigard氏は言います。 NAPAとのパートナーシップ NAPAチームとの密接な関係も、重要な成功要因の一つです。特に、NAPA Steelの導入後の最初の数ヶ月間には、トレーニングビデオやスクリプトの提供を含む適切なタイミングのサポートのおかげで、VARD社は課題を解決するために必要なスキルと自信を早期に得ることができました。新設計の品質と性能を保証する必要がある中、NAPAとのこのような関係が時間短縮の取り組み強化の中心的な役割を果たしています。
Read Article2月 28, 2024
KYMA社: 3Dモデルが引き起こすヨットデザインの革新
ヨットデザインの世界は、常に革新が求められています。進化する顧客の要求は、船舶設計者や構造エンジニアに対して、創造性の限界を押し広げるように促しながら、安全性とスムーズで効率的な設計プロセスを確保することを求めています。ここでは、NAPAツールを使用して、KYMA社が最新の3D船舶設計を活用し、どのようにこの難題を好機として取り組んだかについてお伝えします。
Read Article1月 28, 2024
代替燃料の未来をモデル化するには
あなたの船が将来どのような代替燃料を使用するのか知りたいですか?あなただけではありません。新しいエネルギー源が世界の船舶に登場するにつれて、船舶業界は確実性を求めています。しかし、占いに頼る必要はありません – 代わりに、シミュレーションツールを使用することで、新しい船の設計、運用、コストについて何を期待するべきかを明らかにすることができます。試す準備はできていますか?ここではその方法を説明します。 船舶業界の代替燃料と革新的な船舶設計への関心は否定できません。現在、代替燃料を使用できる船舶は、世界の船のごく一部 – 総トン数で約6.52% – を占めていますが、その数は急速に増えることが予想されます。2023年の世界のオーダーブックの約半分は、メタノール、LPG、LNG、またはバッテリーを含む代替燃料または動力システムを使用する船舶のためのものでした。これは、前年の3分の1に比べて増加しています(DNVの分析による)。 この代替燃料への需要の増加は、大部分が単純な計算によるものです:エネルギー効率の良い船舶を持つことは商業的に利益をもたらします。すでに、現代のエネルギー効率の良い船舶は、古い船舶よりも優れたチャーター料金を得る傾向があり、プレミアムは1日あたり数千ドルに達し、特定の船舶タイプではさらに高くなります。 ビジネスケースは、燃料効率だけでなく、大幅な温室効果ガス排出削減を目指すことで、今後も成長を続けるでしょう。最近、欧州域内排出量取引制度(EU ETS)が船舶に拡大されたことで、船舶は現在、その船舶自体のCO2排出量に対して金銭的負担が求められており、炭素に直接的な価格を設定しています。これには、IMOのCII規制が追加され、これは船舶の競争力とビジネスの見通しをその運用効率に結びつけることを目指しています。今後、評価の低い船舶はビジネスや資金調達を確保するのに苦労する可能性がありますが、トップ評価の船舶は競争優位を持つ可能性があります。 リスクと機会のバランス その結果、代替燃料の使用を先駆けて行う船舶所有者には、大きな潜在的な利益があります。しかし、この戦略はリスクを伴います。新しい燃料への移行は、船舶の安全性、復原性、構成に大きな影響を及ぼし、新しい貯蔵タンクの統合を必要とします。これにより、貨物容量が減少し、したがって商業的な利益性に影響を与える可能性があります。それを正しく行うことは重要ですが、どのようにすればよいのでしょうか? 答えの一部は、私たちが既に手元にあるツールをどのように使用し、組み合わせるかについて創造的に考えることにあります。ここでは、運航シミュレーション機能と3Dツールを船舶設計に一緒に使用することで、多くの洞察を得ることができます。 運航データが船舶設計に新たな洞察をもたらす方法 これはすでに現実のものであり、船舶設計者や技術者は、運航シミュレーションモデルを使用して、未来の船舶が航行するルートの天候や海の状況の範囲について詳細な画像を得ることができます。 この分析は、風速と風向、波高とうねり、および流速と流向に関する過去のデータによって支えられています。そこから、NAPA Designerで作成された3Dモデルを使用して、直接強度分析と荷重評価を行うことができ、未来の船体へのストレスを現実的な方法でシミュレーションを行い、それに応じて設計を調整するのに役立ちます。 このデータ駆動型の天候と海洋状況の画像は、特定の船舶に対して風力推進システムが実際に達成可能な排出削減をシミュレートするためにも使用できます。これにより、船舶所有者は、これらのシステムへの投資を行う前に、より確実性を得ることができます。 多燃料時代に入るにつれて、運航シミュレーションは、未来の船舶が航行する速度の範囲や未来の燃料消費量についての貴重な洞察をもたらすこともできます。これにより、必要なエンジンの最適な出力を決定するだけでなく、船舶に必要な燃料タンクのサイズ決定にも役立ちます。アンモニア、水素、メタノールなどの未来の燃料は、化石燃料に比べてエネルギー密度が低いため、この評価を正しく行うことは、貨物スペースの損失を最小限に抑えるために重要です。 最善の決定を下すためのオプションの比較 運航シミュレーションから得られた洞察とデジタルツインを組み合わせることで、様々な設計バリエーションをテストし、それらが現実の世界でどのように動作するかのモデル化が可能になります。例えば、3Dモデルを使用して、代替燃料を使用する船舶の色々な構成を比較し、船舶の未来の性能、燃料消費、GHG排出、復原性パラメータ、および流体力学的プロファイルに及ぼす影響を計算することができます。 このような形状やプロファイルを簡単にテストする能力は、船舶設計者や技術者が、新しいシステム(例えばバッテリーや追加のタンク)を船舶のどこに設置すべきかを評価することに役立ちます。これには、必要な総容量だけでなく、安全を確保するためにそれらを設置する必要がある場所も考慮に入れます。 これらのシミュレーションは、初期設計段階から行うことができ、設計が進行し詳細が確定するにつれて結果の精度は向上します。具体的には、チームはプロセス全体で異なるオプションを試すことができ、設計が初期段階から構造的で詳細な段階に進むにつれて行わなければならない複数の決定をサポートします。言い換えれば、シミュレーションツールは「推測作業」を排除し、データと証拠に基づいた決定を後押しします。 排出量とコストの見積もり – 数百万ドルの問題 船舶所有者にとって、これは重要です。なぜなら、彼らは初期設計段階から、LNGやメタノールなどの異なる燃料オプションが現実の世界でどのように見えるか、またそれらが貨物容量と予測される燃料消費にどのような影響を及ぼすかについて、より良い理解を得ることができるからです。船舶の設計が形になるにつれて、シミュレーションツールはその未来のGHG排出量をモデル化し、これが環境規制の遵守にどのように影響するかを示すことができます。 最終的には、これらの推定排出量を使用して、燃料自体の購入と異なる燃料オプションの排出許可の関連コストを予測することが目指されます。シミュレーションは、例えばEU ETSの下で設計がコスト競争力を持つようになるタイミングを示すことができ、これは大きな商業的価値をもたらし、新しい燃料と船舶設計の選択を最初から助けることになります。 私たちは未来を予測することはできませんが、データに基づいてそれをモデル化することはできます – 革新的な船舶設計のために、それはすでに大きな変化をもたらしています。
Read Article1月 26, 2024
SDARI、BV、NAPAの共同プロジェクトが3Dモデルベース船級承認の利点を検証
2023年11月20日:世界的な試験、検査、認証のリーダーであるBureau Veritas(BV)、上海船舶設計研究院(SDARI)、そして海事ソフトウェアおよびデータサービスのグローバルプロバイダーであるNAPAは、3Dモデルによる船級承認を可能にする共同開発プロジェクト(JDP)の第一段階を完了しました。 プロジェクトでは、設計者が提供した3Dモデルを直接利用し、複数の変換を必要とする従来の2D図面に基づく従来の船級レビューではなく、3Dモデルに基づく承認(3D MBA)の実現可能性が確認されました。この取組みの目的は、設計プロセスの効率を向上させ、時間とコストを節約すると同時に、造船所、船舶設計者やエンジニア、船主、そして船級協会など、設計に関わるすべての関係者間の精度とコミュニケーションを向上させることです。
Read Article11月 22, 2023
- 1
- 2