Skip to content

Tag: Operational Simulation

Tags

ローターセイルの可能性を引き出す:NAPAとANEMOI社の提携

NAPAとANEMOI社によりもたらされる、高度な相乗効果の鍵となる考えを取り上げた上記の動画では、両社の協力関係が様々な航路や状況において、ローターセイルの潜在能力を最大限に引き出している様子が紹介されています。NAPAの業界をけん引するウェザー・ルーティングと性能最適化の専門知識を、ANEMOI社の最先端のローターセイル技術を組み合わせることで、両社は風力推進により燃料消費と排出量を大幅に削減する未来を形作っています。 NAPAとANEMOI社による、ローターセイルの潜在能力の最大化 NAPAのウェザー・ルーティング・ソリューションは他社にはできないものであり、風力アシスト船に合わせて最適化された航路を提供するために、数十年もの経験を活かしています。同社の最先端のVoyage Optimization API に、ANEMOI社の先進的なローターセイル技術を統合することにより、NAPAは風向きや船舶性能、運航上の制約を考慮した正確な提言を行うことを保証します。 ANEMOI社のローターセイルは、レールや折り畳み機能などの革新的な展開システムを備えた設計となっており、唯一無二の柔軟性と適応性を備えているため、幅広い種類の船舶や運航計画に適しています。この強力な組み合わせにより、海運会社はローターセイルのメリットを最大限に享受し、リスクを最小限に抑えつつ、大幅な燃料節減と排出量削減を実現することができます。NAPAとANEMOI社を併用することで、運航者は風力推進を最も効率的かつ効果的な方法で活用することができます。 風力アシスト船のVoyage Optimizationと高度なモデリングの力 NAPAの海事イノベーションにおけるリーダーシップは、数十年にわたる専門知識と持続可能なソリューションの推進に対する揺るぎない信念の上に築かれています。NAPAは、リアルタイムの気象分析と航路最適化を活用することで、船舶が風力を最大限に利用することを可能にし、燃料消費と排出量を大幅に削減しています。 流体力学計算やビッグデータ、3次元船体設計において35年にも及ぶ類まれな経験を以て、NAPAは他社では提供できない見識を提供します。 この専門知識と正確なモデリング能力を組み合わせることで、風力アシスト船にとって最適な性能を確保します。 シミュレーションでの見解:ローターセイルの効率性の解明 NAPAとANEMOI社の提携の一環として、両社は5本のANEMOI社製のローターセイル(5x35m)を搭載した、載貨重量40万トンのVLOC (大型鉱石運搬船)による航海シミュレーションを実施しました。ブラジルのトゥバランからマレーシアのマンジュンまで34日かけて航行し、NAPAの先進的なVoyage Optimizationとローターセイルの組み合わせによる多大なメリットを実証しました。 これらのプロジェクトは、技術的な専門知識と運航効率を組み合わせることで、NAPAとANEMOI社の提携による独自の価値提案を確固たるものにしています。ANEMOI社の5本のローターセイルを導入したことにより、最短航路での11% の燃料消費削減 に直接貢献しました。NAPA Voyage Optimization APIにより最適化すると、この影響は増大し、基準値と比較して全体で25%の燃料消費削減とコスト節減 に繋がりました。 重要なポイント 最適なウェザー・ルーティング 風力推進船の大幅な燃料費削減を実現 データ主導の船舶設計 ビジネスモデルと技術検証のための重要なステップ 船舶の技術的及び造船学的側面への理解 船舶の運航最適化と競争力への鍵 NAPAとANEMOI社は、風力アシスト船の可能性の限界を押し広げようとしています。この協力関係は、世界中の海運会社の収益性と持続可能性を高める現実的なソリューションを提供することを目的としています。 デモの予約を希望する方はこちら:

Read Article

より良く、そして環境に優しい船舶設計を目指しますか?運航データがその力になります。

シミュレーションツールは、航海最適化や、運航の安全性と持続可能性を高める高度な復原性ソフトウェアの基盤としてよく知られています。そして今、このデジタルツールに新たな役割が生まれつつあります。それは、設計段階で仮想的に新しい船舶のコンセプトを試すことで、船舶設計におけるイノベーションを推進することです。  海運業界は今、様々な燃料やエネルギーを必要とする時代を迎えようとしており、それはますます個々のニーズに合わせた設計と同義語になっていくでしょう。燃料や技術の選択肢は、船舶の種類や用途によって最適なものが異なります。また、最も適切なソリューションは、船舶の運航状況や航行ルートによっても異なります。 例えば、最近、タグボートやフェリーにバッテリー技術が採用されたことは、これらのシステムが、特定の近海航路を航行する小型船舶に特に適していることを示しています。一方、風力推進システムは、強力で安定した風が吹く外洋航路の船舶に最も効果的です。寄港地で燃料補給ができるかどうかも、LNG、メタノール、アンモニアなどの代替燃料に関する決定に影響を与えるでしょう。 しかし、これは、こうした斬新なコンセプトの開発を担当するエンジニアや船舶設計者が、設計段階で下さなければならない多くの決定事項の内のほんの一部にすぎません。課題は、新しいエンジン、タンク、技術を統合することだけでなく、安全性、効率性、収益性の観点から、これらの設計が海上で有効であることを保証するために、適切な構成、寸法、積載量、強度、船体形状を選択することにあります。 最終的な目標は、船舶設計者が設計の初期段階から、新しい船舶コンセプトが就航後にどのような性能を発揮するかをモデル化できるようにすることです。迅速かつ簡単にこれを行えるようになるのが理想的です。そうすれば、様々な検証を繰り返し行い、コンセプトを確実に最適化することができます。 従来、設計者は類似船のデータに基づいてこれらの評価を下してきましたが、このデータは不完全であることが多く、また、過去において平均的にうまく機能してきた簡略化された規則に基づいて作成されている場合があります。このアプローチは、船舶設計にとってもはや最適な方法ではなく、技術革新を阻害する恐れもあります。さらに、過去のデータが存在しない全く新しい設計の場合はどうでしょうか?その答えは、すでに船舶の運航で広く使用されているツールにあり、それを船舶設計のための新たな見識を引き出すために再利用することです。 未来のパフォーマンスをシミュレーションする3つのステップ  実際の業務ではどのように行われるのでしょうか?類似船舶のデータが入手できない場合でも、以下の3つのステップに従うことで、未来の船舶性能をモデル化することができます。 ステップ1:流力性能モデルの作成 船舶の設計に使用された3Dモデルに基づいて、流力性能モデルは、特定の船舶がさまざまな速度や海象条件下でどのように機能するかを把握する。 流力性能モデルをゼロから構築することは、多大な時間と労力を要する作業になる可能性がありますが、その必要はありません。NAPA性能モデルは、世界中のすべての既存の船種とサイズに対応する基準モデルを提供し、この分析のための最適な枠組みとなります。その後、新しい設計の独自の特性を反映したデータによって調整されます。 ステップ2:運航計画の決定  これは、本船が運航される地域や寄港地だけでなく、想定される速度の範囲や本船が受ける積付条件についても概要を示すものです。 これは、すでに船舶の運航状況を詳細に把握している修繕計画においては容易なことですが、新造船の場合は、AISデータから多くの情報を得ることができます。NAPAのデータベースは、数年にわたる6万隻の船舶のAISデータで構成され、このデータの意味を理解し、船舶タイプや サイズごとにフィルタリングするなどのアルゴリズムによってサポートされています。実際、このデータベースは、どの地域で、どのようなタイプの船舶が、どのように運航されているかという貴重な情報を提供しています。 ステップ3:現実的な運航のシミュレーション 流力性能モデルと運航計画を一緒にすることで、特定の航路における未来の船の性能をモデル化することができます。 NAPA Voyage Optimizationはまさにそれを実行するように設定されています。このツールは天候に左右される航海のために作られたもので、複数の航路バリエーションにおける船の挙動をシミュレートすることで、世界のどこでも2つの港を結ぶ最適な航路と速度分布を決定します。 その第一の目的は運航ですが、まだ図面にしか描かれていない船舶のコンセプトに対して、理論的な航海をモデル化する目的にも利用できます。 過去の気象データと、関連する海域や時期の統計的気候データを使って、船舶が運航する海域の気象条件や海況を再現します。そうすることで、未来の船舶の速度範囲、エンジン負荷、燃料消費量、運航中の温室効果ガス排出量をモデル化することができます。 よりエネルギー効率の高い船舶の設計に加え、NAPAの運航シミュレーションツールは、より安全で耐久性の高い船舶の開発にも利用できます。船舶設計者は、未来の船舶の耐航性能を評価し、船舶がその耐用期間中に航行する現実的な条件や航海に必要な構造荷重を評価することができます。 船舶設計者にとっての最大の利点は、さまざまな設計の繰り返しにおいてこの分析をすべて繰り返し、船主独自の運航ニーズを満たすにはどのオプションが最適かを判断できることです。  ケーススタディ – 繰り返し設計の検証 これが実際にどのようなものかを説明するために、バルト海のストックホルム、マリエハムン、ヘルシンキ間の航路に就航する新造RoPax船を例にとってみましょう。 私たちはまず、全長197メートル、幅31メートル、設計喫水7.1メートルの基本船型から始めました。その後、排水量(または重量)を一定に保ちながら、それぞれ寸法と構造を変えた3つのバリエーションを作成しました。 船体バリエーション 次のステップは、3港間の航路、スウェーデン群島での速度制限、入港時の低速などを考慮した運航計画を立てることです。これをもとに、2023年全体をカバーする26航海(2週間に1航海)のシミュレーションを行いました。 その結果、設計改善のための豊富な情報が得られ、未来の船は航行時間の約50%を全速力で、25%を港で過ごし、残りを低速で運航することが明らかになりました。これは、必要な推進力レベルを理解し、エネルギー効率を最大化するための適切なエンジン出力と構成の選択に役立つため、設計の観点からは貴重な知見です。 新燃料とエネルギー源のシミュレーション これをさらに一歩進めれば、将来の燃料消費量のシミュレーションを行い、特定の船舶のさまざまな燃料オプションのコストと排出削減効果を比較することができます。今後のEU ETSと FuelEU罰則を計算に含めることで、この10年間と将来における燃料コストを包括的に把握することができます。このようなシミュレーションは、新たな運航コストを考慮した場合、設計のバリエーションによる大きな違いを明らかにすることができ、最終的には船主の大幅な経費削減につながります。このような分析の不確実性は、予測される燃料価格と規制コストの精度に左右されますが、規制の状況や価格予測が明らかになるにつれて、運航シミュレーションツールはさらに強力になるでしょう。 将来を見据えた船舶設計のために、従来と異なる思考を なぜこのようなビジョンが重要なのでしょうか?なぜなら、海運業界が脱炭素の未来に向けて自信を持って前進するためには、船舶設計の選択と同じくらい重要な決定が、データと証拠に基づいて行われなければならないからです。 このシミュレーションは、既成概念にとらわれず、すでに自由に使えるシミュレーションツールを最大限に活用することで、今後先駆者となる船主が直面する最も重要な疑問の1つである、「新造船が安全で効率的、コンプライアンスに適合し、経営上のニーズに応えることができるか」、という問いに明確な答えを提供できることを示しています。 EUETS、FuelEU、IMOのGHG戦略など、新たな環境規制が導入され、エネルギー効率の高い設計や、最終的には新燃料への移行が求められる中、船舶設計の革新はもはや「あればいい」ものではなく、不可欠なものとなりつつあります。 今日、環境対応型船舶がより良い傭船料を獲得していることがすでに確認されており、特定の船種では割増料が1日あたり1万米ドル、あるいはそれ以上に達しています。しかし、より多くの船主に決断を促すためには、彼らの投資がいかに健全で、多くの場合20年以上に及ぶその耐用年数を通じて、彼らの資産がいかに将来性を保ち、コンプライアンスを遵守できるかを、確かなデータ分析によって証明する必要があります。 より広い意味で、これは船舶設計の革新を支える運航データの力を証明するものでもあります。海上に革新的な船舶の数が増えるにつれ、設計データと運航データの間に新たな架け橋を作る機会が私達にはあります。これは、実際の運航から得られる知見を設計プロセスに反映させ、将来の船隊の性能を向上させるためには非常に重要なことです。船主と造船会社が匿名化された安全なデータ共有に協力する必要がありますが、それだけの価値があるはずです。海事業会、人々、そして地球、すべてが恩恵を受けることになるのです。        

Read Article